Apache# FOP Design: Properties

Version 1298724

by Karen Lease

Table of contents

IR 1110 L8 T 1 o o SRR 2
2 ISSUBS......teeiee ettt ettt et a ettt e skt e bt e e he e e b e e R et SR e e eRe e e R e e eRe e e Ee e eRe e eaEeeeRe e eaEeeeReeenReeaReeeneeaneeaneeaneeareens 2
3 OVEINVIEW Of PrOCESSING.....cuieviiueeitieteseesteeiteseesteessesseessesssesseesseasesseessesssesseesseassesseessesssesseensessesssennes 2
4 PropertyLIStBUITAEN........ciceeeeee ettt et e et e e neesae et e eneesreeneeenee e 2
5 PrOPEITY QaBLYPES......eeeeeeteiteetesie ettt e bbb s et bt e bt e st e e e e e e e be st e nbe e b e nseeneenneneas 2
B PrOPEITY IMEKENS.... .ottt h ettt e e b bt bt e bt e st e e e s e b e e e b e nbeeneene e 3
7 Processing the attribDULE TISE..........ooeoiiie et st 3
8 HOw the Property MaKer WOIKS.........couiiiiiiieiie ettt sttt st nse e snte e nreesnneennee s 4
9 Structure Of the PropertyLiSh.......cooieiieee ettt e e te e e e sneenneennens 4
10 Implementing Standard PropertiES.........coueiieieiierecieseese e see e see e ste e e seee e e sseenaesseenseenee e 5

10.1 GENENIC PrOPEITIES.....eiveeerieeieeieeie st st ettt et et e b e bt sb e s st e st et et e b et e sbesbenae e st ene e e e eensenbesbeene e 5

10.2 Element-SPeCifiC PrOPEITIES.......cc.i ittt b e b nne e 5

10.3 REFEIENCE PrOPEITIES. ... eiieeieeitieiteeeesieeste et e st e st eee st e ste et e s bt e sbesstesaeesbeensesseesbeentesaeesaeensesneenseeneas 6

10.4 CorrespoNdiNg PrOPEITIES......cc.uiiiieiie it eiee et esee et e s e s e e s e s rre e s e e e beessaeebeesreeeseeasaeeseesreeeseennns 6
I Y/ = o o o USSR 6
12 ENUMENELEA VBIUBS........coiiiiieieiieieeie ettt bbbttt et e bbbt be s bt e ne e e e 7
13 COMPOUNT PIrOPENTY TY[IES.....eeueeueetertestestestesieeieeseeseestesbesbesbesseese e e esessesbesbesbesbesseese e s e s e nsesbesbesbesneeneas 7
I L T 0T 0= o TSP 7

NS R 1000 B = O T N (= < TR 8

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Apache# FOP Design: Properties

1 Introduction

Astheinput XSL-FO isbeing parsed and the FO Treeis being built, the attributes of the FO elements are
passed by the parser to the related FO object. The java object that represent the FO object then converts
the attributes into properties that are stored in the FO Tree.

2 Issues

The following are some issues when dealing with properties:

* Initial Property Set

* Inheritance: Some properties can be inherited from parent objects.

* Adoption: The parentage for some elements can move around. Markers are one example.
* Multiple Namespaces: The properties for foreign namespaces must be handled.

* Expressions: XSL-FO expressions can be included in properties.

3 Overview of Processing

The general flow of property processing is as follows:

* Aspartof FOTreeBui | der. start El ement (), FQbj . handl eAtt rs ispassed alist of
attributes to be processed for the new FOb.

* FODbj.handleAttrs gets a PropertyListBuilder and asks it to create a Property List from thelist of
attributes. Thereis currently only one static PropertyListBuilder, which handles the fo: namespace.

* FObj.handleAttrs then cross-references the returned PropertyList with the FObj, creates a
PropertyManager to facilitate downstream processing of the PropertyList, and handles the special
case of the writing-mode property.

4 PropertyListBuilder

Each plb object containsahash of property namesand their respective Makers. It may also contain el ement-
specific property maker hashes; these are based on the local name of the flow object, ie. table-row, not
fo:table-row. If an element-specific property mapping exists, it is preferred to the generic mapping.

The PLB loops through each attribute in the list, finds an appropriate "Maker" for it, then calls the Maker
to convert the attribute value into a Property object of the correct type, and stores that Property in the
PropertyL.ist.

5 Property datatypes

The property datatypes are defined in the org.apache.fop.datatypes package, except Number and String
which are java primitives. The FOP datatypes are:

* Number
» String
* ColorType

* Length (has several subclasses)
* CondLength (compound)

Page 2/8

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Apache# FOP Design: Properties

» LengthRange (compound)
* Space (compound)
* Keep (compound)

The org.apache.fop.fo.Property classis the superclass for all Property subclasses. There is a subclass for
each kind of property datatype. These are named using the datatype name plusthe word Property, resulting
in NumberProperty, StringProperty, and so on. There is also a class EnumProperty which uses an i nt
primitive to hold enumerated values. There is no corresponding Enum datatype class.

The Property class provides a"wrapper” around any possible property value. Code manipulating property
values (in layout for example) usually knows what kind (or kinds) of datatypes are acceptable for agiven
property and will use the appropriate accessor.

The base Property class defines accessor methods for al FO property datatypes, such as getNumber(),
getColorType(), getSpace(), getEnum(), etc. It doesn't define accessors for SVG types, since these are
handled separately (at least for now.) In the base Property class, all of these methods return null, except
getEnum which returns O. Individual subclasses return a value of the appropriate type, such as Length or
ColorType. A subclass may also chooseto return areasonable value for other accessor types. For example,
a SpaceProperty will return the optimum value if asked for a Length.

6 Property Makers

The Property class containsanested classcalled Maker. Thisisthe baseclassfor al other property Makers.
It provides basic framework functionality which isoverridden by the code generated by properties.xsl from
the *properties.xml files. In particular it provides basic expression evaluation, using PropertyParser class
in the org.apache.fop.fo.expr package.

Other Property subclasses such as LengthProperty define their own nested Maker classes (subclasses of
Property.Maker). These handle conversion from the Property subclassreturned from expression evaluation
into the appropriate subclass for the property.

For each generic or specific property definition in the properties.xml files, a new subclass of one of the
Maker classes is created. Note that no new Property subclasses are created, only new PropertyMaker
subclasses. Once the property value has been parsed and stored, it has no specific functionality. Only
the Maker code is specific. Maker subclasses define such aspects as keyword substitutions, whether
the property can be inherited or not, which enumerated values are legal, default values, corresponding
properties and specific datatype conversions.

ThePLB findsa"Maker" for the property based on the attribute name and the element name. Most Makers
are generic and handle the attribute on any element, but it's possible to set up an element-specific property
Maker. The attribute name to Maker mappings are automatically created during the code generation phase
by processing the XML property description files.

7 Processing the attribute list

The PLB first looks to see if the font-size property is specified, since it sets up relative units which can
be used in other property specifications. Each attribute is then handled in turn. If the attribute specifies
part of a compound property such as space-before.optimum, the PLB looks to see if the attribute list also
contains the "base" property (space-before in this case) and processes that first.

Page 3/8

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Apache# FOP Design: Properties

8 How the Property Maker works

Thereisafamily of Maker objectsfor each of the property datatypes, such asL ength, Number, Enumerated,
Space, etc. But since each Property has specific aspects such as whether it'sinherited, its default value, its
corresponding properties, etc. there is usually a specific Maker for each Property. All these Maker classes
are created during the code generation phase by processing (using XSLT) the XML property description
filesto create Java classes.

The Maker first checks for "keyword" values for a property. These are things like "thin, medium, thick"
for the border-width property. The datatypeisreally aLength but it can be specified using these keywords
whose actual value is determined by the "User Agent" rather than being specified in the XSL standard.
For FOP, these values are currently defined in foproperties.xml. The keyword value is just a string, so it
still needs to be parsed as described next.

The Maker also checks to see if the property is an Enumerated type and then checks whether the value
matches one of the specified enumeration values.

Otherwise the Maker uses the property parser in the fo.expr package to evaluate the attribute value and
return a Property object. The parser interprets the expression language and performs numeric operations
and function call evaluations.

If the returned Property valueis of the correct type (specificed in foproperties.xml, where el se?), the Maker
returnsit. Otherwise, it may be able to convert the returned type into the correct type.

Some kinds of property values can't be fully resolved during FO tree building because they depend
on layout information. This is the case of length values specified as percentages and of the special
proportional-column-width(x) specification for table-column widths. These are stored as specia kinds of
Length objects which are evaluated during layout. Expressionsinvolving "em" units which are relative to
font-size _are_resolved during the FO tree building however.

9 Structure of the PropertyList

The PropertyList extends HashMap and its basic function is to associate Property value objects with
Property names. The Property objects are al subclasses of the base Property class. Each one simply
contains a reference to one of the property datatype objects. Property provides accessors for all known
datatypes and various subclasses override the accessor(s) which are reasonable for the datatype they store.

The PropertyList itself provides various ways of looking up Property values to handle such issues as
inheritance and corresponding properties.

Themainlogicis:

If the property is a writing-mode relative property (using start, end, before or after in its name), the
corresponding absolute property value isreturned if it's explicitly set on this FO.

Otherwise, the writing-mode relative value is returned if it's explicitly set. If the property isinherited, the
process repeats using the PropertyList of the FO's parent object. (Thisis easy because each PropertyList
points to the PropertyList of the nearest ancestor FO.) If the property isn't inherited or no value is found
at any level, theinitial valueisreturned.

Page 4/8

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Apache# FOP Design: Properties

10 Implementing Standard Properties

Because the properties defined in the standard are basically static, FOP currently builds the source code
for the related Property classes from an XML data file. All properties are specified in src/codegen/
fopropertiesxml. The related classes are created automatically during the build process by applying an
XSLT stylesheet to the foproperties.xml file.

10.1 Generic properties

In the properties xml files, one can define generic property definitions which can serve as a basis for
individual property definitions. There are currently several generic properties defined in foproperties.xml.
AnexampleisGenericColor, which definesbasic propertiesfor all ColorType properties. Sincethegeneric
specification doesn't include the inherited or default elements, these should be set in each property which
is based on GenericColor. Hereis an example:

<property t ype='generic' > <nane>backgr ound- col or </ nanme> <use-
generi c>CGeneri cCol or </ use-generi c> <i nherited>fal se</inherited>
<def aul t >t ranspar ent </ def aul t > </ property>

A generic property specification can include all of the elements defined for the property element in the
DTD, including the description of components for compound properties, and the specification of keyword
shorthands.

Generic property specifications can be based on other generic specifications. An example is
GenericCondPadding template which is based on the GenericCondL ength definition but which extends it
by adding an inherited element and a default value for the length component.

Generic properties can specify enumerated values, asin the GenericBorderStyle template. This means that
the list of values, which is used by 8 properties (the "absolute” and "writing-mode-relative" variants for
each BorderStyle property) is only specified one time.

When a property includes a "use-generic" element and includes no other elements (except the "name"
element), then no class is generated for the property. Instead the generated mapping will associate this
property directly with an instance of the generic Maker.

A generic class may al so be hand-coded, rather than generated from the propertiesfile. Properties based on
such a generic class are indicated by the attributei spr opcl ass="'true' onthe use-generic element.

Thisisillustrated by the SV G properties, most of which use one of the Property subclasses defined in the
org.apache.fop.svg package. Although all of these properties are now declared in svgproperties.xml, no
specific classes are generated. Classes are only generated for those SV G properties which are not based
on generic classes defined in svg.

10.2 Element-specific properties

Properties may be defined for al flow objects or only for particular flow objects. A PropertyListBuilder
object will always look first for a Property.Maker for the flow object before looking in the general
list. These are specified in the el enent - property-1i st section of the properties.xml files. The
| ocal nane element children of thiselement specify for which flow-object elements the property should
be registered.

Page 5/8

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Apache# FOP Design: Properties

NOTE: All the properties for an object or set of objects must be specified in a single element-property-
list element. If the same localname appears in several element lists, the later set of properties will hide
the earlier ones! Use the ref functionality if the same property is to be used in different sets of element-

specific mappings.
10.3 Reference properties

A property element may have atype attribute with the valuer ef . The content of the name child element
is the name of the referenced property (not its class-name!). This indicates that the property specification
has already been given, either in this same specification file or in adifferent one (indicated by thef ami | y
attribute). The value of the family attribute is XX where the file XXproperties.xml defines the referenced
property. For example, some SV G objects may have properties defined for FO. Rather than defining them
again with a new name, the SVG properties simply reference the defined FO properties. The generating
mapping for the SVG properties will use the FO Maker classes.

10.4 Corresponding properties

Some properties have both absolute and writing-mode-relative forms. In general, the absolute forms are
equivalent to CSS properties, and the writing-mode-relative forms are based on DSSSL.. FO files may use
either or both forms. In FOP code, arequest for an absolute form will retrieve that valueif it was specified
on the FO; otherwise the corresponding relative property will be used if it was specified. However, a
request for arelative form will only use the specified relative value if the corresponding absolute value
was not specified for that FO.

Corresponding properties are specified in the properties.xml files using the element cor r espondi ng,
which has at least one pr opval child and may have apr opexpr child, if the corresponding value is
calculated based on several other properties, asfor st art - i ndent .

NOTE: most current FOP code accesses the absolute variants of these properties, notably for padding,
border, height and width attributes. However it does use start-indent and end-indent, rather than the
"absolute" margin properties.

11 Mapping

The XSL script pr opmap. xsl is used to generate property mappings based on both foproperties.xml
and svgproperties.xml. The mapping classes in the main fop packages simply load these automatically
generated mappings. The mapping code still uses the static "maker” function of the generated object to
obtain a Maker object. However, for all generated classes, this method returns an instance of the class
itself (which is asubclass of Property.Maker) and not an instance of a separate nested Maker class.

For most SV G properties which use the SV G Property classes directly, the generated mapper code calls
the "maker" method of the SV G Property class, which returns an instance of its nested Maker class.

The property generation also handles element-specific property mappings as specified in the properties
XML files.

Page 6/8

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Apache# FOP Design: Properties

12 Enumerated values

For any property whose datatype is Enumor which contains possible enumerated values, FOP code may
need to access enumeration constants. These are defined in the interfaces whose name is the same as
the generated class name for the property, for example Bor der Bef or eSt yl e. NONE. These interface
classes are generated by the XSL script enungen. xsl . A separate interface defining the enumeration
constantsisaways generated for every property which usesthe constants, even if the constants themselves
are defined in ageneric class, asin BorderStyle.

If a subproperty or component of a compound property has enumerated values, the constants are defined
in a nested interface whose name is the name of the subproperty (using appropriate capitalization rules).
For example, the keep properties may have values of AUTO or FORCE or an integer value. These
are defined for each kind of keep property. For example, the keep-together property is a compound
property with the components within-line, within-column and within-page. Since each component may
have the values AUTO or FORCE, the KeepTogether interface defines three nested interfaces, one for
each component, and each defines these two constants. An example of areference in code to the constant
isKeepToget her. Wt hi nPage. AUTQO.

13 Compound property types

Some XSL FO properties are specified by compound datatypes. In the FO file, these are defined by a
group of attributes, each having a name of the form pr operty. conponent, for example space-
bef or e. m ni mum These are several compound datatypes:

» LengthConditional, with components length and conditionality

* LengthRange, with components minimum, optimum, and maximum

» Space, with components minimum, optimum, maximum, precedence and conditionality
» Keep, with components within-line, within-column and within-page

These are described in the properties.xml files using the element conpound which hassubpr operty
children. A subproperty element ismuch like aproperty element, although it may not haveani nheri t ed
child element, as only a complete property object may be inherited.

Specific datatype classes exist for each compound property. Each component of a compound datatype is
itself stored as a Property object. Individual components may be accessed either by directly performing
a get operation on the name, using the "dot" notation, eg. get (" space- bef ore. opti muni'); or
by using an accessor on the compound property, eg. get (" space- before") . get Opti mun() . In
either case, theresult is aProperty object, and the actual value may be accessed (in this example) by using
the "getLength()" accessor.

14 Refinement

The Refinement step is part of reading and using the properties which may happen immediately or during
the layout process. FOP does not currently use a separate Refinement process, but tendsto handle refining
steps asthe FO Treeis built.

Page 7/8

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Apache# FOP Design: Properties

15 Refined FO Tree

The Refined FO Tree isthe result of the Refinement process.

Page 8/8

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

	Table of contents
	1 Introduction
	2 Issues
	3 Overview of Processing
	4 PropertyListBuilder
	5 Property datatypes
	6 Property Makers
	7 Processing the attribute list
	8 How the Property Maker works
	9 Structure of the PropertyList
	10 Implementing Standard Properties
	10.1 Generic properties
	10.2 Element-specific properties
	10.3 Reference properties
	10.4 Corresponding properties

	11 Mapping
	12 Enumerated values
	13 Compound property types
	14 Refinement
	15 Refined FO Tree

