head 1.22; access; symbols pkgsrc-2023Q4:1.22.0.4 pkgsrc-2023Q4-base:1.22 pkgsrc-2023Q3:1.22.0.2 pkgsrc-2023Q3-base:1.22 pkgsrc-2023Q2:1.21.0.14 pkgsrc-2023Q2-base:1.21 pkgsrc-2023Q1:1.21.0.12 pkgsrc-2023Q1-base:1.21 pkgsrc-2022Q4:1.21.0.10 pkgsrc-2022Q4-base:1.21 pkgsrc-2022Q3:1.21.0.8 pkgsrc-2022Q3-base:1.21 pkgsrc-2022Q2:1.21.0.6 pkgsrc-2022Q2-base:1.21 pkgsrc-2022Q1:1.21.0.4 pkgsrc-2022Q1-base:1.21 pkgsrc-2021Q4:1.21.0.2 pkgsrc-2021Q4-base:1.21 pkgsrc-2021Q3:1.19.0.6 pkgsrc-2021Q3-base:1.19 pkgsrc-2021Q2:1.19.0.4 pkgsrc-2021Q2-base:1.19 pkgsrc-2021Q1:1.19.0.2 pkgsrc-2021Q1-base:1.19 pkgsrc-2020Q4:1.18.0.8 pkgsrc-2020Q4-base:1.18 pkgsrc-2020Q3:1.18.0.6 pkgsrc-2020Q3-base:1.18 pkgsrc-2020Q2:1.18.0.4 pkgsrc-2020Q2-base:1.18 pkgsrc-2020Q1:1.18.0.2 pkgsrc-2020Q1-base:1.18 pkgsrc-2019Q4:1.17.0.6 pkgsrc-2019Q4-base:1.17 pkgsrc-2019Q3:1.17.0.2 pkgsrc-2019Q3-base:1.17 pkgsrc-2019Q2:1.16.0.4 pkgsrc-2019Q2-base:1.16 pkgsrc-2019Q1:1.16.0.2 pkgsrc-2019Q1-base:1.16 pkgsrc-2018Q4:1.13.0.2 pkgsrc-2018Q4-base:1.13 pkgsrc-2018Q3:1.11.0.2 pkgsrc-2018Q3-base:1.11 pkgsrc-2018Q2:1.10.0.4 pkgsrc-2018Q2-base:1.10 pkgsrc-2018Q1:1.10.0.2 pkgsrc-2018Q1-base:1.10 pkgsrc-2017Q4:1.8.0.6 pkgsrc-2017Q4-base:1.8 pkgsrc-2017Q3:1.8.0.4 pkgsrc-2017Q3-base:1.8 pkgsrc-2017Q2:1.7.0.2 pkgsrc-2017Q2-base:1.7 pkgsrc-2017Q1:1.5.0.2 pkgsrc-2017Q1-base:1.5 pkgsrc-2016Q4:1.4.0.2 pkgsrc-2016Q4-base:1.4 pkgsrc-2016Q3:1.3.0.2 pkgsrc-2016Q3-base:1.3; locks; strict; comment @# @; 1.22 date 2023.09.05.16.54.20; author vins; state Exp; branches; next 1.21; commitid jyKTlmOQNgYMqBDE; 1.21 date 2021.11.18.07.37.20; author wiz; state Exp; branches; next 1.20; commitid tN3PwlJ3ltCqrfhD; 1.20 date 2021.10.07.14.20.52; author nia; state Exp; branches; next 1.19; commitid QJiB3Fx8Lkrv1TbD; 1.19 date 2021.02.13.15.56.16; author maya; state Exp; branches; next 1.18; commitid WPXDSdSFF6FA8zHC; 1.18 date 2020.03.02.23.33.04; author khorben; state Exp; branches; next 1.17; commitid 5xIWxzlJpzhlQSYB; 1.17 date 2019.08.06.06.16.15; author maya; state Exp; branches; next 1.16; commitid nTg6Hs1CUeQROVxB; 1.16 date 2019.01.20.09.19.44; author he; state Exp; branches; next 1.15; commitid 9kFbpljgSkAbdv8B; 1.15 date 2019.01.08.16.19.03; author abs; state Exp; branches; next 1.14; commitid PRle5uexmDKZUZ6B; 1.14 date 2019.01.07.13.46.14; author he; state Exp; branches; next 1.13; commitid jNHoR17Itiwb6R6B; 1.13 date 2018.11.23.19.28.30; author abs; state Exp; branches; next 1.12; commitid HKsBlJEMqrLor61B; 1.12 date 2018.11.05.18.59.44; author maya; state Exp; branches; next 1.11; commitid cyTCPizBERRhRMYA; 1.11 date 2018.07.18.22.35.44; author maya; state Exp; branches; next 1.10; commitid KWd0KxW7V4omAFKA; 1.10 date 2018.02.03.19.30.46; author adam; state Exp; branches 1.10.4.1; next 1.9; commitid 7QNNOZnj28omSrpA; 1.9 date 2018.01.29.14.02.08; author adam; state Exp; branches; next 1.8; commitid F6f6erDYR8VzdMoA; 1.8 date 2017.07.04.21.56.40; author maya; state Exp; branches; next 1.7; commitid 9dsfRnbipMgvyXXz; 1.7 date 2017.05.28.01.29.42; author maya; state Exp; branches; next 1.6; commitid EFNeDfcQVbFgX5Tz; 1.6 date 2017.05.28.01.22.38; author maya; state Exp; branches; next 1.5; commitid cyS0iFr1xM43V5Tz; 1.5 date 2016.12.30.00.22.44; author maya; state Exp; branches; next 1.4; commitid FfttW9f52O7bnWzz; 1.4 date 2016.09.30.17.17.37; author sevan; state Exp; branches; next 1.3; commitid YvEtEisZqvCTUkoz; 1.3 date 2016.09.28.17.13.16; author maya; state Exp; branches; next 1.2; commitid AQoS2V2btiDWW4oz; 1.2 date 2016.09.28.14.39.00; author maya; state Exp; branches; next 1.1; commitid YkPA78KJzJKt54oz; 1.1 date 2016.09.12.22.13.54; author maya; state Exp; branches; next ; commitid W7aW2n6HdBeM73mz; 1.10.4.1 date 2018.07.20.12.06.09; author bsiegert; state Exp; branches; next ; commitid NtTSxML46iM03SKA; desc @@ 1.22 log @gcc*: include missing header and unbreak build on Linux. @ text @$NetBSD: distinfo,v 1.21 2021/11/18 07:37:20 wiz Exp $ BLAKE2s (ecj-4.5.jar) = dc4803ed7321f118a8d4ed687cb8e14233b05f5ae164ceaca12abe6b44ebb898 SHA512 (ecj-4.5.jar) = d4e1bf7538ace56e3d69fa91da5bbd16c272923b4de0a9d8dee23ea2b75f9f38c603de72fc4061df49285c450b63f3df211cee5270e9fffc5447445d1a9c9e4e Size (ecj-4.5.jar) = 1470676 bytes BLAKE2s (gcc-6.5.0.tar.xz) = c1527dc077b3957812936b12b19bbc777cfd7c5d2169b3ff8641363e761e1161 SHA512 (gcc-6.5.0.tar.xz) = ce046f9a50050fd54b870aab764f7db187fe7ea92eb4aaffb7c3689ca623755604e231f2af97ef795f41c406bb80c797dd69957cfdd51dfa2ba60813f72b7eac Size (gcc-6.5.0.tar.xz) = 74355588 bytes BLAKE2s (isl-0.14.tar.bz2) = 7eb101840278e5819cf4767e8509cb61f0a0a7bac52c8a4c199bfbf10a0ec444 SHA512 (isl-0.14.tar.bz2) = 117c0c6f31d91a9284a8f54a748df6494ca2ac21507a45611e911403e9610579b9323ce624aea1de0b8089b3194e59d4364f01bdb71ddcf8f6c24c749d11c4b7 Size (isl-0.14.tar.bz2) = 1399896 bytes SHA1 (patch-gcc_Makefile.in) = 41d45e8988b59e6ffa7adb7833290d39fc1fd0e1 SHA1 (patch-gcc_config.gcc) = ec4426c7800f909f5ccdfea23e3b3c61a914f061 SHA1 (patch-gcc_config.host) = 5dd1b72be5d520ebc679c79cbe92317eaf66028f SHA1 (patch-gcc_config_arm_arm.h) = e69b7f89ba245847f58253675a16749890b9d1ae SHA1 (patch-gcc_config_host-netbsd.c) = 765295f07edb8a68f1910e3a9b4dd2a7dcd491a5 SHA1 (patch-gcc_config_netbsd-protos.h) = 6d28864b4ccc8c1a63fe28e43601b84b63a00633 SHA1 (patch-gcc_config_netbsd-stdint.h) = 025fc883101a187e84ed4c0772406720d645d550 SHA1 (patch-gcc_config_netbsd.c) = 3c09521e1803633a3643cf396a03f1f433ec869b SHA1 (patch-gcc_config_netbsd.h) = 7586993f89f43de33bd0aac674e3e48c86dfe56d SHA1 (patch-gcc_config_sparc_sparc.c) = a8c668597d70f6af52860e97a4f900b1126fae08 SHA1 (patch-gcc_config_t-netbsd) = 802ad5706aa7ca9629f8e237f08fbb1569d28846 SHA1 (patch-gcc_config_x-netbsd) = 6dc3d78e26df62054ea29f98ca51592858e671e3 SHA1 (patch-gcc_configure) = 15fb7af267b79965f83bc64ce8aad1279b0ea52d SHA1 (patch-gcc_ggc-common.c) = a5d2dba635859f5d680c3f80d7c30b42461c752b SHA1 (patch-gcc_ginclude_stddef.h) = fb1f83801e0f5bcec110667dc868c47ff2d10343 SHA1 (patch-gcc_lto_lto.c) = 825b632e2a7ff5777d4fbfdcf6f0ea3f64c4742b SHA1 (patch-gcc_plugin.c) = 7a7ebc6650fe327fa7be1f7a4d26e8edc7597fcf SHA1 (patch-gcc_system.h) = 4c959a6b1c4d524cbdf44cfb80f0e5758ec20783 SHA1 (patch-gcc_targhooks.c) = f8ec71006cf35947e93fa229bc2f52f46cf5597b SHA1 (patch-libcilkrts_configure) = d8f3065bb9934c3278e5e7dc6f1c56cdf31de6b1 SHA1 (patch-libcilkrts_runtime_os-unix.c) = 653c5e3486d09bddae6a384edc2a3b3f2c95f74b SHA1 (patch-libdecnumber_decNumber.c) = cec90e49c829bfc6ba1ec605d2fac7daaad62762 SHA1 (patch-libffi_configure) = bcfbfe8abddc378e2de4a39ad0669583b37e0292 SHA1 (patch-libffi_testsuite_libffi.call_float2.c) = 6321dde308579448c27c2b6e1e30633699dd145f SHA1 (patch-libgcc_config.host) = 7ef11f83071325ef29b710f40251fce2b62cc9f3 SHA1 (patch-libgcc_crtstuff.c) = d22dd1fb4a79aed2e7c2864f0bb00bcc338b3ab8 SHA1 (patch-libgcc_unwind-dw2-fde-dip.c) = 9c5e1823226521d11900b4d3b92c050d3941a1f6 SHA1 (patch-libgfortran_configure) = 869a60fd08edecf18a42732dcbf226bad1309394 SHA1 (patch-libgo_Makefile.in) = 612987541f745c7be6835ce7fb7119884db294c3 SHA1 (patch-libjava_boehm.cc) = bf5564261b02523927685340f59ce8faf7f84ace SHA1 (patch-libjava_configure) = 48ea2baffe87e09dda8133d286bd9b1bfe4c3f8a SHA1 (patch-libjava_contrib_rebuild-gcj-db.in) = bb01d738fc7db05046ae37e8ade32574de1d8297 SHA1 (patch-libsanitizer_configure.tgt) = 0aff54104734b2cb21090e33f9304738946ea5a0 SHA1 (patch-libstdc++-v3_config_os_bsd_netbsd_ctype__base.h) = 014d442c885b9c51d1a4af05205279c274a9559d SHA1 (patch-libstdc++-v3_config_os_bsd_netbsd_ctype__configure__char.cc) = b63c2682336c9b6f0e0d7b900d6f40ad6e7a5ec4 SHA1 (patch-libstdc++-v3_config_os_bsd_netbsd_ctype__inline.h) = 626fc1f9c035ac5cef30a92d525af4e778835ebf SHA1 (patch-libstdc++-v3_libsupc++_unwind-cxx.h) = 9784bfa4323f8498b36565d0fea28fce69ffdbb1 @ 1.21 log @gcc6: use BLAKE2s @ text @d1 1 a1 1 $NetBSD: distinfo,v 1.20 2021/10/07 14:20:52 nia Exp $ d28 1 @ 1.20 log @lang: Remove SHA1 hashes for distfiles @ text @d1 1 a1 1 $NetBSD: distinfo,v 1.19 2021/02/13 15:56:16 maya Exp $ d3 1 a3 1 RMD160 (ecj-4.5.jar) = d3f4da657f086b6423f74e93f001132f4855368a d6 1 a6 1 RMD160 (gcc-6.5.0.tar.xz) = 66782b17cff89f22e5e8869fa96bd9a8985f5067 d9 1 a9 1 RMD160 (isl-0.14.tar.bz2) = 4c69d026b51561bc1948cb7db79331b78a9d2c39 @ 1.19 log @lang/gcc{6,7,8,9,0}: call SUBTARGET_INIT_BUILTINS on sparc* too While here point out that the aarch64 equivalent patch was sent upstream. Bump PKGREVISION. fix gcc*-libs PKGREVISION accordingly. Fixes PR pkg/55992: math/blas fails on NetBSD/sparc64 Fixes report by Connor McLaughlan on pkgsrc-users @ text @d1 1 a1 1 $NetBSD: distinfo,v 1.18 2020/03/02 23:33:04 khorben Exp $ a2 1 SHA1 (ecj-4.5.jar) = 58c1d79c64c8cd718550f32a932ccfde8d1e6449 a5 1 SHA1 (gcc-6.5.0.tar.xz) = 368b3f5d294b1a8727b372ac0a77703d8b41968a a8 1 SHA1 (isl-0.14.tar.bz2) = b09e25df265c97ed54002cd811d227a9a26c5f9c @ 1.18 log @gcc6: also record the checksum for ecj-4.5.jar This fixes building lang/gcc6 with the "gcc-java" option enabled. @ text @d1 1 a1 1 $NetBSD: distinfo,v 1.17 2019/08/06 06:16:15 maya Exp $ d24 1 @ 1.17 log @gcc{48,49,5,6}: add patch to avoid fragile include guard logic for ansi.h on netbsd. gcc{7,8}: document same patch that already existed was upstreamed. This patch is necessary to build GCC on NetBSD >= 9.0, since changes to ansi.h resulted in not using the same include guards. Fixes PR toolchain/54362 @ text @d1 1 a1 1 $NetBSD: distinfo,v 1.16 2019/01/20 09:19:44 he Exp $ d3 4 @ 1.16 log @Add the netbsd-stdint.h header for NetBSD/alpha so that this builds there as well. @ text @d1 1 a1 1 $NetBSD: distinfo,v 1.15 2019/01/08 16:19:03 abs Exp $ d24 1 @ 1.15 log @Put back distinfo for gcc-6.5.0.tar.xz & isl-0.14.tar.bz2 @ text @d1 1 a1 1 $NetBSD: distinfo,v 1.14 2019/01/07 13:46:14 he Exp $ d12 1 a12 1 SHA1 (patch-gcc_config.gcc) = 6795fc4f852019faef686d6a8a2ede29945b2736 @ 1.14 log @Add a comment to the patch, and add the netbsd-stdint.h header for NetBSD/powerpc, so that the macppc version builds. Thanks to maya@@ for the hint. No revision bump, as this is only a build fix for NetBSD/powerpc. @ text @d1 1 a1 1 $NetBSD$ d3 8 @ 1.13 log @Pull forward patch for host hooks for NetBSD from gcc-5 - needed for working precompiled headers. Also pull in missing config.hosts changes from gcc-6.5 in netbsd-current Bump PKGREVISION @ text @d1 1 a1 1 $NetBSD: distinfo,v 1.12 2018/11/05 18:59:44 maya Exp $ a2 8 SHA1 (gcc-6.5.0.tar.xz) = 368b3f5d294b1a8727b372ac0a77703d8b41968a RMD160 (gcc-6.5.0.tar.xz) = 66782b17cff89f22e5e8869fa96bd9a8985f5067 SHA512 (gcc-6.5.0.tar.xz) = ce046f9a50050fd54b870aab764f7db187fe7ea92eb4aaffb7c3689ca623755604e231f2af97ef795f41c406bb80c797dd69957cfdd51dfa2ba60813f72b7eac Size (gcc-6.5.0.tar.xz) = 74355588 bytes SHA1 (isl-0.14.tar.bz2) = b09e25df265c97ed54002cd811d227a9a26c5f9c RMD160 (isl-0.14.tar.bz2) = 4c69d026b51561bc1948cb7db79331b78a9d2c39 SHA512 (isl-0.14.tar.bz2) = 117c0c6f31d91a9284a8f54a748df6494ca2ac21507a45611e911403e9610579b9323ce624aea1de0b8089b3194e59d4364f01bdb71ddcf8f6c24c749d11c4b7 Size (isl-0.14.tar.bz2) = 1399896 bytes d4 1 a4 1 SHA1 (patch-gcc_config.gcc) = 84fedf863c853c40bf81884f5db3617200f0d31d @ 1.12 log @gcc6: update to 6.5.0. Maintenace update. There are no new features listed on the changelog. 250 bug reports are fixed, listed by this link: https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=6.5 @ text @d1 1 a1 1 $NetBSD: distinfo,v 1.11 2018/07/18 22:35:44 maya Exp $ d13 1 d15 1 d32 1 @ 1.11 log @gcc6: don't try to make references to stack_chk_fail_local on netbsd/sun sun was added as joyent is patching for the same. this code is only reached if compiling for i386 (or some variation of ppc) netbsd's stack_chk_fail_local won't work for this. PR pkg/53436. @ text @d1 1 a1 1 $NetBSD: distinfo,v 1.10 2018/02/03 19:30:46 adam Exp $ d3 4 a6 4 SHA1 (gcc-6.4.0.tar.xz) = f237974b2d3af0f60936ce6a2f35b912a91e0239 RMD160 (gcc-6.4.0.tar.xz) = 63c16a8f5df0c2c2db3355ff1e984ad6b3653ab3 SHA512 (gcc-6.4.0.tar.xz) = 02c60e54527c7adf584798d5251f8a0b80c93d5deafce82501b2c28e6692e0bd783927bbfc4bc527a863c0cccc025150a34740a9e29badb02d4b48e56a8aba90 Size (gcc-6.4.0.tar.xz) = 76156220 bytes @ 1.10 log @Removed mpc patches as these are not needed with newer mpc(omplex) @ text @d1 1 a1 1 $NetBSD: distinfo,v 1.9 2018/01/29 14:02:08 adam Exp $ d24 1 @ 1.10.4.1 log @Pullup ticket #5795 - requested by maya lang/gcc48: i386 build fix lang/gcc5: i386 build fix lang/gcc6: i386 build fix lang/gcc7: i386 build fix lang/gcc8: i386 build fix Revisions pulled up: - lang/gcc48-libs/Makefile 1.29 - lang/gcc48/Makefile 1.41 - lang/gcc48/distinfo 1.38 - lang/gcc48/patches/patch-gcc_targhooks.c 1.1 - lang/gcc5-libs/Makefile 1.13 - lang/gcc5/Makefile 1.29 - lang/gcc5/distinfo 1.19 - lang/gcc5/patches/patch-gcc_targhooks.c 1.1 - lang/gcc6-libs/Makefile 1.7 - lang/gcc6/Makefile 1.14 - lang/gcc6/distinfo 1.11 - lang/gcc6/patches/patch-gcc_targhooks.c 1.1 - lang/gcc7-libs/Makefile 1.3 - lang/gcc7/Makefile 1.19 - lang/gcc7/distinfo 1.11 - lang/gcc7/patches/patch-gcc_targhooks.c 1.1 - lang/gcc8/Makefile 1.2 - lang/gcc8/distinfo 1.2 - lang/gcc8/patches/patch-gcc_targhooks.c 1.1 --- Module Name: pkgsrc Committed By: maya Date: Wed Jul 18 22:42:57 UTC 2018 Modified Files: pkgsrc/lang/gcc5: Makefile distinfo pkgsrc/lang/gcc5-libs: Makefile Added Files: pkgsrc/lang/gcc5/patches: patch-gcc_targhooks.c Log Message: gcc5: don't try to make references to stack_chk_fail_local on netbsd/sun sun was added as joyent is patching for the same. this code is only reached if compiling for i386 (or some variation of ppc) netbsd's stack_chk_fail_local won't work for this. PR pkg/53436 --- Module Name: pkgsrc Committed By: maya Date: Wed Jul 18 22:35:44 UTC 2018 Modified Files: pkgsrc/lang/gcc6: Makefile distinfo pkgsrc/lang/gcc6-libs: Makefile Added Files: pkgsrc/lang/gcc6/patches: patch-gcc_targhooks.c Log Message: gcc6: don't try to make references to stack_chk_fail_local on netbsd/sun sun was added as joyent is patching for the same. this code is only reached if compiling for i386 (or some variation of ppc) netbsd's stack_chk_fail_local won't work for this. PR pkg/53436. --- Module Name: pkgsrc Committed By: maya Date: Wed Jul 18 22:55:08 UTC 2018 Modified Files: pkgsrc/lang/gcc7: Makefile distinfo pkgsrc/lang/gcc7-libs: Makefile Added Files: pkgsrc/lang/gcc7/patches: patch-gcc_targhooks.c Log Message: gcc7: don't try to make references to stack_chk_fail_local on netbsd/sun sun was added as joyent is patching for the same. this code is only reached if compiling for i386 (or some variation of ppc) netbsd's stack_chk_fail_local won't work for this. PR pkg/53436. --- Module Name: pkgsrc Committed By: maya Date: Wed Jul 18 22:56:23 UTC 2018 Modified Files: pkgsrc/lang/gcc8: Makefile distinfo Added Files: pkgsrc/lang/gcc8/patches: patch-gcc_targhooks.c Log Message: gcc8: don't try to make references to stack_chk_fail_local on netbsd/sun sun was added as joyent is patching for the same. this code is only reached if compiling for i386 (or some variation of ppc) netbsd's stack_chk_fail_local won't work for this. PR pkg/53436. --- Module Name: pkgsrc Committed By: maya Date: Wed Jul 18 23:15:42 UTC 2018 Modified Files: pkgsrc/lang/gcc48: Makefile distinfo pkgsrc/lang/gcc48-libs: Makefile Added Files: pkgsrc/lang/gcc48/patches: patch-gcc_targhooks.c Log Message: gcc48: don't try to make references to stack_chk_fail_local on netbsd/sun sun was added as joyent is patching for the same. this code is only reached if compiling for i386 (or some variation of ppc) netbsd's stack_chk_fail_local won't work for this. bump gcc48-libs PKGREVISION above gcc48 PR pkg/53436. @ text @d1 1 a1 1 $NetBSD$ a23 1 SHA1 (patch-gcc_targhooks.c) = f8ec71006cf35947e93fa229bc2f52f46cf5597b @ 1.9 log @Fix building with mpfr 4.0.0 @ text @d1 1 a1 1 $NetBSD: distinfo,v 1.8 2017/07/04 21:56:40 maya Exp $ a40 2 SHA1 (patch-mpc_src_mpc-impl.h) = b447abccc4d715690ca10d4734ac5c35652768e1 SHA1 (patch-mpc_src_mul.c) = d34ee11845ca20a376dd80a907b5ab96b81933f6 @ 1.8 log @gcc6: update to 6.4.0 Changes: RTEM: The ABI changes on ARM so that no short enums are used by default. Bugfixes. an incomplete list of bug fixes made in 6.4 is available in: https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&list_id=183226&resolution=FIXED&target_milestone=6.4 @ text @d1 1 a1 1 $NetBSD: distinfo,v 1.7 2017/05/28 01:29:42 maya Exp $ d41 2 @ 1.7 log @gcc6: remove wip package reference. correct typo. from Kai-Uwe Eckhardt (libcilkrts) on netbsd, always link against libgcc, from Krister Walfridsson bump PKGREVISION. @ text @d1 1 a1 1 $NetBSD: distinfo,v 1.6 2017/05/28 01:22:38 maya Exp $ d3 4 a6 4 SHA1 (gcc-6.3.0.tar.bz2) = 928ab552666ee08eed645ff20ceb49d139205dea RMD160 (gcc-6.3.0.tar.bz2) = 38d297e66ff27786f52ccc2b3a006cd1b056b0f7 SHA512 (gcc-6.3.0.tar.bz2) = 234dd9b1bdc9a9c6e352216a7ef4ccadc6c07f156006a59759c5e0e6a69f0abcdc14630eff11e3826dd6ba5933a8faa43043f3d1d62df6bd5ab1e82862f9bf78 Size (gcc-6.3.0.tar.bz2) = 99903185 bytes @ 1.6 log @gcc6: add patch that helps netbsd/arm builds continue those builds are still broken, but it will help if someone addresses it. @ text @d1 1 a1 1 $NetBSD: distinfo,v 1.5 2016/12/30 00:22:44 maya Exp $ d17 1 a17 1 SHA1 (patch-gcc_config_netbsd.h) = 81891a83bb17b99fdb2c9381b8e8a1767391c695 d24 1 a24 1 SHA1 (patch-libcilkrts_configure) = 0d88069173cba34158f5b6b91d2d12ca81b0300c @ 1.5 log @gcc6: update to 6.3.0. This release is a bug-fix release, containing fixes for regressions in GCC 6.2 relative to previous releases of GCC. An incomplete list of bugs fixed in GCC 6.3 is available here: https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=6.3 @ text @d1 1 a1 1 $NetBSD: distinfo,v 1.4 2016/09/30 17:17:37 sevan Exp $ d13 1 @ 1.4 log @Remove the whitespace between $(LINKER_RPATH_FLAG) and the path. Otherwise the flag may be misinterpreted by linker (e.g. Apple's ld). @ text @d1 1 a1 1 $NetBSD: distinfo,v 1.3 2016/09/28 17:13:16 maya Exp $ d3 4 a6 4 SHA1 (gcc-6.2.0.tar.bz2) = 583e29c7fe69d9a1031a89752c2551ab5aeacb91 RMD160 (gcc-6.2.0.tar.bz2) = d9154ca51f40ae3ce42950a0476f701a9f86fc95 SHA512 (gcc-6.2.0.tar.bz2) = 1e8b826a3d44b9d5899309894e20c03abeb352bf3d273b8ad63af814c0ee2911f1a83ce1cd4cdd2d1cb0b3e3c34e9b7ae1b2ab83dfc649ee817ab05247c76198 Size (gcc-6.2.0.tar.bz2) = 99778648 bytes @ 1.3 log @gcc6: fix typo in previous commit. it was only a precaution to ensure we don't override other values as well. append to the value rather than overwriting while adding an irrelevant (and likely unset) variable. NFC @ text @d1 1 a1 1 $NetBSD: distinfo,v 1.2 2016/09/28 14:39:00 maya Exp $ d11 1 a11 1 SHA1 (patch-gcc_Makefile.in) = ce366a091960d335ecb022918e2f7bfc4e3fcccf @ 1.2 log @lang/gcc{5,6}: avoid overwriting previous extra_objs in gcc/config.gcc No change for i386/amd64, but arm needs additional extra_objs to build. Mistake was in a netbsd-specific part of configure as well. Thanks to Richard Earnshaw and ktkachov at GCC for finding the problem. @ text @d1 1 a1 1 $NetBSD: distinfo,v 1.1 2016/09/12 22:13:54 maya Exp $ d12 1 a12 1 SHA1 (patch-gcc_config.gcc) = f9591af10239ffdbe54721710533ce2df07c6c89 @ 1.1 log @add packages gcc6, gcc6-libs (GCC 6.2.0), based on wip/gcc6snapshot XXX add logic to mk/compiler/gcc.mk Changes from GCC5 series: Caveats The default mode for C++ is now -std=gnu++14 instead of -std=gnu++98. Support for a number of older systems and recently unmaintained or untested target ports of GCC has been declared obsolete in GCC 6. Unless there is activity to revive them, the next release of GCC will have their sources permanently removed. The following ports for individual systems on particular architectures have been obsoleted: SH5 / SH64 (sh64-*-*) as announced here. The AVR port requires binutils version 2.26.1 or later for the fix for PR71151 to work. General Optimizer Improvements UndefinedBehaviorSanitizer gained a new sanitization option, -fsanitize=bounds-strict, which enables strict checking of array bounds. In particular, it enables -fsanitize=bounds as well as instrumentation of flexible array member-like arrays. Type-based alias analysis now disambiguates accesses to different pointers. This improves precision of the alias oracle by about 20-30% on higher-level C++ programs. Programs doing invalid type punning of pointer types may now need -fno-strict-aliasing to work correctly. Alias analysis now correctly supports weakref and alias attributes. This makes it possible to access both a variable and its alias in one translation unit which is common with link-time optimization. Value range propagation now assumes that the this pointer of C++ member functions is non-null. This eliminates common null pointer checks but also breaks some non-conforming code-bases (such as Qt-5, Chromium, KDevelop). As a temporary work-around -fno-delete-null-pointer-checks can be used. Wrong code can be identified by using -fsanitize=undefined. Link-time optimization improvements: warning and error attributes are now correctly preserved by declaration linking and thus -D_FORTIFY_SOURCE=2 is now supported with -flto. Type merging was fixed to handle C and Fortran interoperability rules as defined by the Fortran 2008 language standard. As an exception, CHARACTER(KIND=C_CHAR) is not inter-operable with char in all cases because it is an array while char is scalar. INTEGER(KIND=C_SIGNED_CHAR) should be used instead. In general, this inter-operability cannot be implemented, for example, on targets where function passing conventions of arrays differs from scalars. More type information is now preserved at link time reducing the loss of accuracy of the type based alias analysis compared to builds without link-time optimization. Invalid type punning on global variables and declarations is now reported with -Wodr-type-mismatch. The size of LTO object files was reduced by about 11% (measured by compiling Firefox 46.0). Link-time parallelization (enabled using -flto=n) was significantly improved by decreasing the size of streamed data when partitioning programs. The size of streamed IL while compiling Firefox 46.0 was reduced by 66%. The linker plugin was extended to pass information about type of binary produced to GCC back end (that can be also manually controlled by -flinker-output). This makes it possible to properly configure the code generator and support incremental linking. Incremental linking of LTO objects by gcc -r is now supported on plugin-enabled setups. There are two ways to perform incremental linking: Linking by ld -r will result in an object file with all sections from individual object files mechanically merged. This delays the actual link time optimization to final linking step and thus permits whole program optimization. Linking final binary with such object files is however slower. Linking by gcc -r will lead to link time optimization and produce final binary into the object file. Linking such object file is fast but avoids any benefits from whole program optimization. GCC 7 will support incremental link-time optimization with gcc -r. Inter-procedural optimization improvements: Basic jump threading is now performed before profile construction and inline analysis, resulting in more realistic size and time estimates that drive the heuristics of the of inliner and function cloning passes. Function cloning now more aggressively eliminates unused function parameters. New Languages and Language specific improvements Compared to GCC 5, the GCC 6 release series includes a much improved implementation of the OpenACC 2.0a specification. Highlights are: In addition to single-threaded host-fallback execution, offloading is supported for nvptx (Nvidia GPUs) on x86_64 and PowerPC 64-bit little-endian GNU/Linux host systems. For nvptx offloading, with the OpenACC parallel construct, the execution model allows for an arbitrary number of gangs, up to 32 workers, and 32 vectors. Initial support for parallelized execution of OpenACC kernels constructs: Parallelization of a kernels region is switched on by -fopenacc combined with -O2 or higher. Code is offloaded onto multiple gangs, but executes with just one worker, and a vector length of 1. Directives inside a kernels region are not supported. Loops with reductions can be parallelized. Only kernels regions with one loop nest are parallelized. Only the outer-most loop of a loop nest can be parallelized. Loop nests containing sibling loops are not parallelized. Typically, using the OpenACC parallel construct gives much better performance, compared to the initial support of the OpenACC kernels construct. The device_type clause is not supported. The bind and nohost clauses are not supported. The host_data directive is not supported in Fortran. Nested parallelism (cf. CUDA dynamic parallelism) is not supported. Usage of OpenACC constructs inside multithreaded contexts (such as created by OpenMP, or pthread programming) is not supported. If a call to the acc_on_device function has a compile-time constant argument, the function call evaluates to a compile-time constant value only for C and C++ but not for Fortran. See the OpenACC and Offloading wiki pages for further information. C family Version 4.5 of the OpenMP specification is now supported in the C and C++ compilers. The C and C++ compilers now support attributes on enumerators. For instance, it is now possible to mark enumerators as deprecated: enum { newval, oldval __attribute__ ((deprecated ("too old"))) }; Source locations for the C and C++ compilers are now tracked as ranges, rather than just points, making it easier to identify the subexpression of interest within a complicated expression. For example: test.cc: In function 'int test(int, int, foo, int, int)': test.cc:5:16: error: no match for 'operator*' (operand types are 'int' and 'foo') return p + q * r * s + t; ~~^~~ In addition, there is now initial support for precise diagnostic locations within strings: format-strings.c:3:14: warning: field width specifier '*' expects a matching 'int' argument [-Wformat=] printf("%*d"); ^ Diagnostics can now contain "fix-it hints", which are displayed in context underneath the relevant source code. For example: fixits.c: In function 'bad_deref': fixits.c:11:13: error: 'ptr' is a pointer; did you mean to use '->'? return ptr.x; ^ -> The C and C++ compilers now offer suggestions for misspelled field names: spellcheck-fields.cc:52:13: error: 'struct s' has no member named 'colour'; did you mean 'color'? return ptr->colour; ^~~~~~ New command-line options have been added for the C and C++ compilers: -Wshift-negative-value warns about left shifting a negative value. -Wshift-overflow warns about left shift overflows. This warning is enabled by default. -Wshift-overflow=2 also warns about left-shifting 1 into the sign bit. -Wtautological-compare warns if a self-comparison always evaluates to true or false. This warning is enabled by -Wall. -Wnull-dereference warns if the compiler detects paths that trigger erroneous or undefined behavior due to dereferencing a null pointer. This option is only active when -fdelete-null-pointer-checks is active, which is enabled by optimizations in most targets. The precision of the warnings depends on the optimization options used. -Wduplicated-cond warns about duplicated conditions in an if-else-if chain. -Wmisleading-indentation warns about places where the indentation of the code gives a misleading idea of the block structure of the code to a human reader. For example, given CVE-2014-1266: sslKeyExchange.c: In function 'SSLVerifySignedServerKeyExchange': sslKeyExchange.c:629:3: warning: this 'if' clause does not guard... [-Wmisleading-indentation] if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0) ^~ sslKeyExchange.c:631:5: note: ...this statement, but the latter is misleadingly indented as if it is guarded by the 'if' goto fail; ^~~~ This warning is enabled by -Wall. The C and C++ compilers now emit saner error messages if merge-conflict markers are present in a source file. test.c:3:1: error: version control conflict marker in file <<<<<<< HEAD ^~~~~~~ C It is possible to disable warnings when an initialized field of a structure or a union with side effects is being overridden when using designated initializers via a new warning option -Woverride-init-side-effects. A new type attribute scalar_storage_order applying to structures and unions has been introduced. It specifies the storage order (aka endianness) in memory of scalar fields in structures or unions. C++ The default mode has been changed to -std=gnu++14. C++ Concepts are now supported when compiling with -fconcepts. -flifetime-dse is more aggressive in dead-store elimination in situations where a memory store to a location precedes a constructor to that memory location. G++ now supports C++17 fold expressions, u8 character literals, extended static_assert, and nested namespace definitions. G++ now allows constant evaluation for all non-type template arguments. G++ now supports C++ Transactional Memory when compiling with -fgnu-tm. Runtime Library (libstdc++) Extensions to the C++ Library to support mathematical special functions (ISO/IEC 29124:2010), thanks to Edward Smith-Rowland. Experimental support for C++17, including the following new features: std::uncaught_exceptions function (this is also available for -std=gnu++NN modes); new member functions try_emplace and insert_or_assign for unique_key maps; non-member functions std::size, std::empty, and std::data for accessing containers and arrays; std::invoke; std::shared_mutex; std::void_t and std::bool_constant metaprogramming utilities. Thanks to Ville Voutilainen for contributing many of the C++17 features. An experimental implementation of the File System TS. Experimental support for most features of the second version of the Library Fundamentals TS. This includes polymorphic memory resources and array support in shared_ptr, thanks to Fan You. Some assertions checked by Debug Mode can now also be enabled by _GLIBCXX_ASSERTIONS. The subset of checks enabled by the new macro have less run-time overhead than the full _GLIBCXX_DEBUG checks and don't affect the library ABI, so can be enabled per-translation unit. Timed mutex types are supported on more targets, including Darwin. Improved std::locale support for DragonFly and FreeBSD, thanks to John Marino and Andreas Tobler. Fortran Fortran 2008 SUBMODULE support. Fortran 2015 EVENT_TYPE, EVENT_POST, EVENT_WAIT, and EVENT_QUERY support. Improved support for Fortran 2003 deferred-length character variables. Improved support for OpenMP and OpenACC. The MATMUL intrinsic is now inlined for straightforward cases if front-end optimization is active. The maximum size for inlining can be set to n with the -finline-matmul-limit=n option and turned off with -finline-matmul-limit=0. The -Wconversion-extra option will warn about REAL constants which have excess precision for their kind. The -Winteger-division option has been added, which warns about divisions of integer constants which are truncated. This option is included in -Wall by default. libgccjit The driver code is now run in-process within libgccjit, providing a small speed-up of the compilation process. The API has gained entrypoints for timing how long was spent in different parts of code, creating switch statements, allowing unreachable basic blocks in a function, and adding arbitrary command-line options to a compilation. New Targets and Target Specific Improvements AArch64 A number of AArch64-specific options have been added. The most important ones are summarised in this section but for usage instructions please refer to the documentation. The new command-line options -march=native, -mcpu=native and -mtune=native are now available on native AArch64 GNU/Linux systems. Specifying these options causes GCC to auto-detect the host CPU and choose the optimal setting for that system. -fpic is now supported when generating code for the small code model (-mcmodel=small). The size of the global offset table (GOT) is limited to 28KiB under the LP64 SysV ABI, and 15KiB under the ILP32 SysV ABI. The AArch64 port now supports target attributes and pragmas. Please refer to the documentation for details of available attributes and pragmas as well as usage instructions. Link-time optimization across translation units with different target-specific options is now supported. The option -mtls-size= is now supported. It can be used to specify the bit size of TLS offsets, allowing GCC to generate better TLS instruction sequences. The option -fno-plt is now fully functional. The ARMv8.1-A architecture and the Large System Extensions are now supported. They can be used by specifying the -march=armv8.1-a option. Additionally, the +lse option extension can be used in a similar fashion to other option extensions. The Large System Extensions introduce new instructions that are used in the implementation of atomic operations. The ACLE half-precision floating-point type __fp16 is now supported in the C and C++ languages. The ARM Cortex-A35 processor is now supported via the -mcpu=cortex-a35 and -mtune=cortex-a35 options as well as the equivalent target attributes and pragmas. The Qualcomm QDF24xx processor is now supported via the -mcpu=qdf24xx and -mtune=qdf24xx options as well as the equivalent target attributes and pragmas. Code generation for the ARM Cortex-A57 processor is improved. Among general code generation improvements, a better algorithm is added for allocating registers to floating-point multiply-accumulate instructions offering increased performance when compiling with -mcpu=cortex-a57 or -mtune=cortex-a57. Code generation for the ARM Cortex-A53 processor is improved. A more accurate instruction scheduling model for the processor is now used, and a number of compiler tuning parameters have been set to offer increased performance when compiling with -mcpu=cortex-a53 or -mtune=cortex-a53. Code generation for the Samsung Exynos M1 processor is improved. A more accurate instruction scheduling model for the processor is now used, and a number of compiler tuning parameters have been set to offer increased performance when compiling with -mcpu=exynos-m1 or -mtune=exynos-m1. Improvements in the generation of conditional branches and literal pools were made to allow the compiler to compile functions of a large size. Constant pools are now placed into separate rodata sections. The new option -mpc-relative-literal-loads is introduced to generate per-function literal pools, limiting the maximum size of functions to 1MiB. Several correctness issues with generation of Advanced SIMD instructions for big-endian targets have been fixed resulting in improved code generation for ACLE intrinsics with -mbig-endian. ARM Support for revisions of the ARM architecture prior to ARMv4t has been deprecated and will be removed in a future GCC release. The -mcpu and -mtune values that are deprecated are: arm2, arm250, arm3, arm6, arm60, arm600, arm610, arm620, arm7, arm7d, arm7di, arm70, arm700, arm700i, arm710, arm720, arm710c, arm7100, arm7500, arm7500fe, arm7m, arm7dm, arm7dmi, arm8, arm810, strongarm, strongarm110, strongarm1100, strongarm1110, fa526, fa626. The value arm7tdmi is still supported. The values of -march that are deprecated are: armv2,armv2a,armv3,armv3m,armv4. The ARM port now supports target attributes and pragmas. Please refer to the documentation for details of available attributes and pragmas as well as usage instructions. Support has been added for the following processors (GCC identifiers in parentheses): ARM Cortex-A32 (cortex-a32), ARM Cortex-A35 (cortex-a35). The GCC identifiers can be used as arguments to the -mcpu or -mtune options, for example: -mcpu=cortex-a32 or -mtune=cortex-a35. Heterogeneous Systems Architecture GCC can now generate HSAIL (Heterogeneous System Architecture Intermediate Language) for simple OpenMP device constructs if configured with --enable-offload-targets=hsa. A new libgomp plugin then runs the HSA GPU kernels implementing these constructs on HSA capable GPUs via a standard HSA run time. If the HSA compilation back end determines it cannot output HSAIL for a particular input, it gives a warning by default. These warnings can be suppressed with -Wno-hsa. To give a few examples, the HSA back end does not implement compilation of code using function pointers, automatic allocation of variable sized arrays, functions with variadic arguments as well as a number of other less common programming constructs. When compilation for HSA is enabled, the compiler attempts to compile composite OpenMP constructs #pragma omp target teams distribute parallel for into parallel HSA GPU kernels. IA-32/x86-64 GCC now supports the Intel CPU named Skylake with AVX-512 extensions through -march=skylake-avx512. The switch enables the following ISA extensions: AVX-512F, AVX512VL, AVX-512CD, AVX-512BW, AVX-512DQ. Support for new AMD instructions monitorx and mwaitx has been added. This includes new intrinsic and built-in support. It is enabled through option -mmwaitx. The instructions monitorx and mwaitx implement the same functionality as the old monitor and mwait instructions. In addition mwaitx adds a configurable timer. The timer value is received as third argument and stored in register %ebx. x86-64 targets now allow stack realignment from a word-aligned stack pointer using the command-line option -mstackrealign or __attribute__ ((force_align_arg_pointer)). This allows functions compiled with a vector-aligned stack to be invoked from objects that keep only word-alignment. Support for address spaces __seg_fs, __seg_gs, and __seg_tls. These can be used to access data via the %fs and %gs segments without having to resort to inline assembly. Please refer to the documentation for usage instructions. Support for AMD Zen (family 17h) processors is now available through the -march=znver1 and -mtune=znver1 options. MeP Support for the MeP (mep-elf) architecture has been deprecated and will be removed in a future GCC release. MSP430 The MSP430 compiler now has the ability to automatically distribute code and data between low memory (addresses below 64K) and high memory. This only applies to parts that actually have both memory regions and only if the linker script for the part has been specifically set up to support this feature. A new attribute of either can be applied to both functions and data, and this tells the compiler to place the object into low memory if there is room and into high memory otherwise. Two other new attributes - lower and upper - can be used to explicitly state that an object should be placed in the specified memory region. If there is not enough left in that region the compilation will fail. Two new command-line options - -mcode-region=[lower|upper|either] and -mdata-region=[lower|upper|either] - can be used to tell the compiler what to do with objects that do not have one of these new attributes. PowerPC / PowerPC64 / RS6000 PowerPC64 now supports IEEE 128-bit floating-point using the __float128 data type. In GCC 6, this is not enabled by default, but you can enable it with -mfloat128. The IEEE 128-bit floating-point support requires the use of the VSX instruction set. IEEE 128-bit floating-point values are passed and returned as a single vector value. The software emulator for IEEE 128-bit floating-point support is only built on PowerPC GNU/Linux systems where the default CPU is at least power7. On future ISA 3.0 systems (POWER 9 and later), you will be able to use the -mfloat128-hardware option to use the ISA 3.0 instructions that support IEEE 128-bit floating-point. An additional type (__ibm128) has been added to refer to the IBM extended double type that normally implements long double. This will allow for a future transition to implementing long double with IEEE 128-bit floating-point. Basic support has been added for POWER9 hardware that will use the recently published OpenPOWER ISA 3.0 instructions. The following new switches are available: -mcpu=power9: Implement all of the ISA 3.0 instructions supported by the compiler. -mtune=power9: In the future, apply tuning for POWER9 systems. Currently, POWER8 tunings are used. -mmodulo: Generate code using the ISA 3.0 integer instructions (modulus, count trailing zeros, array index support, integer multiply/add). -mpower9-fusion: Generate code to suitably fuse instruction sequences for a POWER9 system. -mpower9-dform: Generate code to use the new D-form (register+offset) memory instructions for the vector registers. -mpower9-vector: Generate code using the new ISA 3.0 vector (VSX or Altivec) instructions. -mpower9-minmax: Reserved for future development. -mtoc-fusion: Keep TOC entries together to provide more fusion opportunities. New constraints have been added to support IEEE 128-bit floating-point and ISA 3.0 instructions: wb: Altivec register if -mpower9-dform is enabled. we: VSX register if -mpower9-vector is enabled for 64-bit code generation. wo: VSX register if -mpower9-vector is enabled. wp: Reserved for future use if long double is implemented with IEEE 128-bit floating-point instead of IBM extended double. wq: VSX register if -mfloat128 is enabled. wF: Memory operand suitable for POWER9 fusion load/store. wG: Memory operand suitable for TOC fusion memory references. wL: Integer constant identifying the element number mfvsrld accesses within a vector. Support has been added for __builtin_cpu_is() and __builtin_cpu_supports(), allowing for very fast access to AT_PLATFORM, AT_HWCAP, and AT_HWCAP2 values. This requires use of glibc 2.23 or later. All hardware transactional memory builtins now correctly behave as memory barriers. Programmers can use #ifdef __TM_FENCE__ to determine whether their "old" compiler treats the builtins as barriers. Split-stack support has been added for gccgo on PowerPC64 for both big- and little-endian (but not for 32-bit). The gold linker from at least binutils 2.25.1 must be available in the PATH when configuring and building gccgo to enable split stack. (The requirement for binutils 2.25.1 applies to PowerPC64 only.) The split-stack feature allows a small initial stack size to be allocated for each goroutine, which increases as needed. GCC on PowerPC now supports the standard lround function. A new configuration option ---with-advance-toolchain=at was added for PowerPC 64-bit GNU/Linux systems to use the header files, library files, and the dynamic linker from a specific Advance Toolchain release instead of the default versions that are provided by the GNU/Linux distribution. In general, this option is intended for the developers of GCC, and it is not intended for general use. The "q", "S", "T", and "t" asm-constraints have been removed. The "b", "B", "m", "M", and "W" format modifiers have been removed. S/390, System z, IBM z Systems Support for the IBM z13 processor has been added. When using the -march=z13 option, the compiler will generate code making use of the new instructions and registers introduced with the vector extension facility. The -mtune=z13 option enables z13 specific instruction scheduling without making use of new instructions. Compiling code with -march=z13 reduces the default alignment of vector types bigger than 8 bytes to 8. This is an ABI change and care must be taken when linking modules compiled with different arch levels which interchange variables containing vector type values. For newly compiled code the GNU linker will emit a warning. The -mzvector option enables a C/C++ language extension. This extension provides a new keyword vector which can be used to define vector type variables. (Note: This is not available when enforcing strict standard compliance e.g. with -std=c99. Either enable GNU extensions with e.g. -std=gnu99 or use __vector instead of vector.) Additionally a set of overloaded builtins is provided which is partially compatible to the PowerPC Altivec builtins. In order to make use of these builtins the vecintrin.h header file needs to be included. The new command line options -march=native, and -mtune=native are now available on native IBM z Systems. Specifying these options will cause GCC to auto-detect the host CPU and rewrite these options to the optimal setting for that system. If GCC is unable to detect the host CPU these options have no effect. The IBM z Systems port now supports target attributes and pragmas. Please refer to the documentation for details of available attributes and pragmas as well as usage instructions. -fsplit-stack is now supported as part of the IBM z Systems port. This feature requires a recent gold linker to be used. Support for the g5 and g6 -march=/-mtune= CPU level switches has been deprecated and will be removed in a future GCC release. -m31 from now on defaults to -march=z900 if not specified otherwise. -march=native on a g5/g6 machine will default to -march=z900. SH Support for SH5 / SH64 has been declared obsolete and will be removed in future releases. Support for the FDPIC ABI has been added. It can be enabled using the new -mfdpic target option and --enable-fdpic configure option. SPARC An ABI bug has been fixed in 64-bit mode. Unfortunately, this change will break binary compatibility with earlier releases for code it affects, but this should be pretty rare in practice. The conditions are: a 16-byte structure containing a double or a 8-byte vector in the second half is passed to a subprogram in slot #15, for example as 16th parameter if the first 15 ones have at most 8 bytes. The double or vector was wrongly passed in floating-point register %d32 in lieu of on the stack as per the SPARC calling conventions. Operating Systems AIX DWARF debugging support for AIX 7.1 has been enabled as an optional debugging format. A more recent Technology Level (TL) and GCC built with that level are required for full exploitation of DWARF debugging capabilities. Linux Support for the musl C library was added for the AArch64, ARM, MicroBlaze, MIPS, MIPS64, PowerPC, PowerPC64, SH, i386, x32 and x86_64 targets. It can be selected using the new -mmusl option in case musl is not the default libc. GCC defaults to musl libc if it is built with a target triplet matching the *-linux-musl* pattern. RTEMS The RTEMS thread model implementation changed. Mutexes now use self-contained objects defined in Newlib instead of Classic API semaphores. The keys for thread specific data and the once function are directly defined via . Self-contained condition variables are provided via Newlib . The RTEMS thread model also supports C++11 threads. OpenMP support now uses self-contained objects provided by Newlib and offers a significantly better performance compared to the POSIX configuration of libgomp. It is possible to configure thread pools for each scheduler instance via the environment variable GOMP_RTEMS_THREAD_POOLS. Solaris Solaris 12 is now fully supported. Minimal support had already been present in GCC 5.3. Solaris 12 provides a full set of startup files (crt1.o, crti.o, crtn.o), which GCC now prefers over its own ones. Position independent executables (PIE) are now supported on Solaris 12. Constructor priority is now supported on Solaris 12 with the system linker. libvtv has been ported to Solaris 11 and up. Windows The option -mstackrealign is now automatically activated in 32-bit mode whenever the use of SSE instructions is requested. Other significant improvements The gcc and g++ driver programs will now provide suggestions for misspelled command line options. $ gcc -static-libfortran test.f95 gcc: error: unrecognized command line option '-static-libfortran'; did you mean '-static-libgfortran'? The --enable-default-pie configure option enables generation of PIE by default. Non exhaustive list of bug fixes in GCC 6.2.0 release: 77463 internal compiler error: in output_move_qimode 71092 [6/7 Regression] ICE: in cxx_eval_call_expression 77034 [6.2RC regression] g++.dg/init/elide5.C fails on powerpc64-unknown-linux-gnu with -m32 70597 [6/7 Regression] cmd/go: deduplicate gccgo afiles by package path 71936 [6/7 Regression] ICE in wide_int_to_tree 77279 build error in isl/ctx.h 67419 gfortran.dg/large_real_kind_2.F90 FAILs 73434 [6/7 Regression] Wrong code with casting 71972 [6 Regression] ICE with ""-std=c++14"" on x86_64-linux-gnu (internal compiler error: Segmentation fault 72819 [AArch64] ABI error: HFA structs of __fp16 incorrectly passed to functions 73456 [6/7 regression][concepts] ICE in non_atomic_constraint_p 72853 gcc/testsuite/gcc.c-torture/execute/20021120-1.c generates incorrect stxssp op with -mcpu=power9 71981 [6/7 Regression] ICE at -O2 and -O3 on x86_64-linux-gnu (internal compiler error: in get_dynamic_type 71881 [6 Regression] ICE on valid code at -O3 with -g enabled on x86_64-linux-gnu: cannot update SSA form 72802 powerpc64le: -mcpu=power9 emits lxssp instruction with offset that isn't a multiple of 4 72800 [5/6 Regression] ICE on invalid C++14 code with initialized lambda capture: tree check: expected class ‘type’ 70040 [5 Regression] ICE in gimplify.c with deferred-length strings 72699 [6/7 Regression] ICE in gfc_check_dependency 70677 Suboptimal cond on AVR: unneeded stack frame 71853 [6/7 regression] ICE on an ill-formed case statement in c_do_switch_warnings 72457 [6/7 Regression] ICE: Segmentation fault 71738 [4.9/5/6/7 Regression] ICE on valid C++ code: tree check: expected record_type or union_type or qual_union_type 71350 [4.9/5/6/7 regression] ICE on trailing return type declaration with initializer list 70847 [6/7 Regression] exponential time in cp_fold for chained virtual function calls 71756 [5/6/7 Regression] internal compiler error: in ~saved_token_sentinel 71147 [6 Regression] Flexible array member wrongly rejected in template 67579 [concepts] Memoization for constraint expressions 67565 [concepts] Very slow compile time and high memory usage with complex concept definitions 71941 [6/7 Regression] ICE with OpenMP tasks and queue 71495 [6/7 Regression] Spurious ""note: initializing argument ... of ..."" without any warning/error 70822 [6 Regression] bogus ""error: lvalue required as unary ‘&’ operand"" with C++14 parenthesized SCOPE_REF 71718 [6/7 Regression] ICE on erroneous recursive template error printing 70824 [6/7 Regression] cc1plus consumes all available memory on specific template code 70781 [6/7 Regression] ICE on invalid C++ code with lambda expressions on x86_64-linux-gnu in finish_expr_stmt 71896 [6/7 Regression] Constexpr function with pointer to member parameter doesn't return constexpr value 71117 [6/7 Regression] Overeager application of conversion to function pointer during overload resolution of call to function object 71511 [6/7 Regression] ICE on valid C++11 code (with decltype) on x86_64-linux-gnu: in cxx_incomplete_type_diagnostic 71513 [6/7 Regression] ICE on valid C++11 code (with alignas specifier) on x86_64-linux-gnu: Segmentation fault 71604 [6/7 Regression] ICE on valid C++11 code with range-based for loop: in pop_binding 71711 [6/7 Regression] ICE on valid C++1z code with fold expression: tree check: expected tree_vec 71814 [6/7 Regression] ICE on valid C++11 code: in write_type 70972 [6 Regression] Inheriting constructors taking parameters by value should move them 71856 [6/7 Regression] _GLIBCXX_DEBUG-mode breaks GNU parallel extension 71916 [6/7 Regression] ICE at -O3 on valid code on x86_64-linux-gnu in ""maybe_record_trace_start 71835 [6/7 Regression] ICE on invalid C++ code with ambiguous overloaded operators: tree check: expected tree that contains ‘decl minimal’ structure 71828 [6/7 regression] ICE on valid C++11 code with constexpr __Complex int variable declaration: in operand_equal_p 71822 [6/7 Regression] ICE: in gimplify_expr 70869 [6 Regression] internal compiler error: Segmentation fault on array of pointer to function members 71493 [6/7 regression] accidental ABI change for structure return on PowerPC 69515 partial specialization of variable templates is broken 70584 constexpr variables cannot be used as intrinsic arguments where an immediate is expected 71164 [6/7 Regression] tree check fail at cp/pt.c:12961 71733 ICE in vmx test cases with -mcpu=power9 71624 [6 regression][CHKP] internal compiler error: in duplicate_thunk_for_node 71823 [6/7 Regression] g++ segfaults with -mfma and -ftree-slp-vectorize 71173 [6/7 regression] Qualified name lookup 70685 [6/7 Regression] ICE: Segmentation fault 70222 Test miscompiled with -O1 71100 [6/7 regression] Internal compiler error while calling a pointer to member function that throws 71739 [6/7 Regression] ICE on valid C++11 code: tree check: expected identifier_node 70916 [6 Regression] gcc ICE at -O3 on valid code on x86_64-linux-gnu in ""tree_operand_check 71521 [6 Regression] Regression in GCC-7.0.0's optimizer 30417 Section .data cannot be moved with -mmcu=atmega88 71057 [6 Regression] ICE in schedule_generic_params_dies_gen 71056 [6 Regression] __builtin 70540 [4.9/5 Regression] ICE on invalid code in cxx_incomple @ text @d1 1 a1 1 $NetBSD: distinfo,v 1.23 2015/05/06 05:25:00 keckhardt Exp $ d12 1 a12 1 SHA1 (patch-gcc_config.gcc) = bfa3897de6afa573ee44a60973611c4e9024f497 @