REFERENCE MANUAL for Speech Signal Processing Toolkit Ver. 3.9

December 25, 2015

The help message for every command can be obtained with the option "-h". The help message brings explanation of the command, how to use, as well as its options.

Example: for the command mcep (\% is the shell prompt)

```
> % mcep -h
>
> mcep - mel cepstral analysis
>
> usage:
> mcep [ options ] [ infile ] > stdout
> options:
> -a a : all-pass constant [0.35]
> -m m : order of mel cepstrum [25]
> -l l : frame length [256]
> -h : print this message
> (level 2)
> -i i : minimum iteration [2]
> -j j : maximum iteration [30]
> -d d : end condition [0.001]
> -e e : small value added to periodogram [0]
> infile:
> windowed sequences (float) [stdin]
> stdout:
> mel-cepstrum (float)
```

For more information related to this toolkit, please refer to http://sourceforge.net/projects/sp-tk/. In this site, the "Examples of Using Speech Signal Processing Toolkit" documentation file can be downloaded. If you have any bug reports, comments, or questions related this toolkit, please use the bug-tracker on SPTK website. We will try to answer every question, but we cannot guarantee it.

Contents

acep - adaptive cepstral analysis 1
acorr - obtain autocorrelation sequence 3
agcep - adaptive generalized cepstral analysis 4
amcep - adaptive mel-cepstral analysis 6
average - calculate mean for each block 8
b2mc - transform MLSA digital filter coefficients to mel-cepstrum 9
bcp -block copy 10
bcut - binary file cut 12
bell - ring a bell 14
c2acr - transform cepstrum to autocorrelation 15
c2ir - cepstrum to minimum phase impulse response 16
c2ndps - cepstrum to Negative Derivative of Phase Spectrum (NDPS) 17
c2sp - transform cepstrum to spectrum 19
cdist - calculation of cepstral distance 20
clip - data clipping 22
da - play 16-bit linear PCM data 23
det - DCT-II 25
decimate - decimation (data skipping) 27
delay - delay sequence 28
delta - delta calculation 29
df2 - second order standard form digital filter 33
dfs \quad - digital filter in standard form 34
dmp - binary file dump 36
dtw - dynamic time warping 38
ds - down-sampling 41
echo2 - echo arguments to the standard error 42
excite - generate excitation 43
extract - extract vecton 44
fd - file dump 45
fdrw - draw a graph 47
fft - FFT for complex sequence 49
fft2 - 2-dimensional FFT for complex sequence 50
fftcep - FFT cepstral analysis 53
fftr - FFT for real sequence 54
fftr2 - 2-dimensional FFT for real sequence 55
fig - plot a graph 57
frame - extract trame trom data sequence 64
freqt - frequency transformation 65
gc2gc - generalized cepstral transformation 66
gcep - generalized cepstral analysis 68
glogsp - draw a log spectrum graph 70
glsadt - GLSA digital filter for speech synthesis 72
gmm - GMM parameter estimation 74
gmmp - calculation of GMM log-probability 80
gnorm - gain normalization 82
grlogsp - draw a running log spectrum graph 83
grpdelay - group delay of digital filter 86
gseries - draw a discrete series 87
gwave - draw a waveform 89
histogram - histogram 91
lidct - Inverse DCT-II 92
ifft - inverse FFT for complex sequence 94
ifft2 - 2-dimensional inverse FFT for complex sequence 95
ifftr - inverse FFT for real sequence 97
ignorm - inverse gain normalization 98
impulse - generate impulse sequence 99
imsvq - decoder of multi stage vector quantization 100
interpolate - interpolation of data sequence 101
ivq - decoder of vector quantization 102
Ibg -LBG algorithm for vector quantizer design 103
levdur - solve an autocorrelation normal equation using Levinson-Durbin method 107
Iinear_intpl - linear interpolation of data 109
Imadf - LMA digital filter for speech synthesis 111
Ipc - LPC analysis using Levinson-Durbin method 114
[pc2c - transform LPC to cepstrum 115
|pc21sp - transform LPC to LSP 117
|pc2par - transform LPC to PARCOR 119
Isp21pc - transform LSP to LPC 121
Isp2sp - transform LSP to spectrum 122
Ispcheck - check stability and rearrange LSP 124
Ispdf - LSP speech synthesis digital filter 126
Itcdf - all-pole lattice digital filter for speech synthesis 127
mc2b - transform mel-cepstrum to MLSA digital filter coefficients 128
mcep -mel cepstral analysis 129
merge -data merge 131
mfcc - mel-frequency cepstral analysis 133
mgc2mgc - frequency and generalized cepstral transformation 136
mgc2mgclsp - transform MGC to MGC-LSP 138
mgc2sp - transform mel-generalized cepstrum to spectrum 140
mgcep - mel-generalized cepstral analysis 142
mgclsp2sp - transform MGC-LSP to spectrum 146
mgclsp2mgc - transform MGC-LSP to MGC 148
mglsadf - MGLSA digital filter for speech synthesis 150
minmax - find minimum and maximum values 153
mlpg - obtains parameter sequence from PDF sequence 155
mlsacheck - check stability of MLSA filter 158
mlsadt - MLSA digital filter for speech synthesis 161
msvq - multi stage vector quantization 164
nan - data check 165
ndps2c - Negative Derivative of Phase Spectrum (NDPS) to cepstrum 166
norm0 - normalize coefficients 167
nrand - generate normal distributed random value 168
par2lpc - transform PARCOR to LPC 169
pea - principal component analysis 170
pcas - calculate principal component scores 171
phase - transform real sequence to phase 172
pitch - pitch extraction 174
poledf - all pole digital filter for speech synthesis 175
psgr - XY-plotter simulator for EPSF 176
ramp - generate ramp sequence 178
raw2wav - raw to wav (RIFF) 180
reverse - reverse the order of data in each block 181
rmse - calculation of root mean squared error 182
root_pol - calculate roots of a polynomial equation 184
sin - generate sinusoidal sequence 186
smcep - mel-cepstral analysis using 2nd order all-pass filter 187
snr - evaluate SNR and segmental SNR 190
sopr - execute scalar operations 192
spec - transform real sequence to \log spectrum 195
step - generate step sequence 198
swab - swap bytes 199
symmetrize - symmetrize the sequence of data 200
train - generate pulse sequence 201
transpose - transpose a matrix 202
uels - unbiased estimation of log spectrum 203
ulaw - μ-law compress/decompress 205
us -up-sampling 206
us16 -up-sampling from 10 or 12 kHz to 16 kHz 208
uscd -up/down-sampling from $8,10,12$, or 16 kHz to $11.025,22.05$, or 44.1 kHz 209
vc -GMM-based voice conversion 210
vopr - execute vector operations 216
vq - vector quantization 219
vstat - vector statistics calculation 220
vsum - summation of vector 223
wav2raw - wav (RIFF) to raw 225
wavjoin - join two monaural WAV files 226
wavsplit - split a stereo WAV file 227
window - data windowing 228
区2x - data type transformation 230
Xgr - XY-plotter simulator for X-window system 233
zcross - zerocross 235
zerodf - all zero digital filter for speech synthesis 236
REFERENCESREFERENCES 237
INDEX of TOPICS 243

NAME
acep - adaptive cepstral analysis[4, 5]

SYNOPSIS

$$
\begin{aligned}
\text { acep } & {[-\mathbf{m} M][-\mathbf{l} L][-\mathbf{t} T][-\mathbf{k} K][-\mathbf{p} P][-\mathbf{s}][-\mathbf{e} E][-\mathbf{P} P a] } \\
& {[\text { pefile }]<\text { infile } }
\end{aligned}
$$

DESCRIPTION

acep uses adaptive cepstral analysis [4], [5], to calculate cepstral coefficients from unframed float data from standard input, sending the result to standard output. If pefile is given, acep writes the prediction error is written to that file.

Both input and output files are in float format.
The algorithm to calculate recursively the adaptive cepstral coefficients is

$$
\begin{aligned}
c^{(n+1)} & =c^{(n)}-\mu^{(n)} \hat{\nabla} \varepsilon_{\tau}^{(n)} \\
\hat{\nabla} \varepsilon_{0}^{(n)} & =-2 e(n) e^{(n)} \quad(\tau=0) \\
\hat{\nabla} \varepsilon_{\tau}^{(n)} & =-2(1-\tau) \sum_{i=-\infty}^{n} \tau^{n-i} e(i) e^{(i)} \quad(0 \leq \tau<1) \\
\hat{\nabla} \varepsilon_{\tau}^{(n)} & =\tau \hat{\nabla} \varepsilon_{\tau}^{(n-1)}-2(1-\tau) e(n) e^{(n)} \\
\mu^{(n)} & =\frac{k}{M \varepsilon^{(n)}} \\
\varepsilon^{(n)} & =\lambda \varepsilon^{(n-1)}+(1-\lambda) e^{2}(n)
\end{aligned}
$$

where $\boldsymbol{c}=[c(1), \ldots, c(M)]^{\top}, \boldsymbol{e}^{(n)}=[e(n-1), \ldots, e(n-M)]^{\top}$. Also, the gain is expressed by $c(0)$ as follows:

$$
c(0)=\frac{1}{2} \log \varepsilon^{(n)}
$$

In Figure II, the system for adaptive cepstral analysis is shown.

Figure 1: Adaptive cepstral analysis system

OPTIONS

$\mathbf{- m}$	M	order of cepstrum	$[25]$
$\mathbf{- 1}$	L	leakage factor λ	$[0.98]$
$\mathbf{- t}$	T	momentum constant τ	$[0.9]$
$\mathbf{- k}$	K	step size k	$[0.1]$
$\mathbf{- p}$	P	output period of cepstrum	$[1]$
$\mathbf{- s}$		output smoothed cepstrum	[FALSE]
$\mathbf{- e}$	E	minimum value for $\varepsilon^{(n)}$	$[0.0]$
$\mathbf{- P}$	Pa	number of coefficients of the LMA filter using the Padé approx-	$[4]$
		imation. $P a$ should be 4 or 5.	

EXAMPLE

In this example, the speech data is in the file data.f in float format and the prediction error can be found in data.er. The cepstral coefficients are written to the file data.acep for every block of 100 samples.

$$
\text { acep -m } 15 \text {-p } 100 \text { data.er < data.f > data.acep }
$$

NOTICE

$$
P a=4 \text { or } 5
$$

SEE ALSO

uets, gcep, mcep, mgcep, amcep, agcep, Imadt

NAME

acorr - obtain autocorrelation sequence

SYNOPSIS

```
    acorr [-m M][-lL][infile]
```


DESCRIPTION

acorr calculates the m-th order autocorrelation function sequence for each frame of float data from infile (or standard input), sending the result to standard output. Namely, the input data is given by

$$
x(0), x(1), \ldots, x(L-1)
$$

and the autocorrelation is evaluated as

$$
r(k)=\sum_{m=0}^{L-1-k} x(m) x(m+k), \quad k=0,1, \ldots, M
$$

and the output is the following autocorrelation function sequence,

$$
r(0), r(1), \ldots, r(M)
$$

Both input and output files are in float format.

OPTIONS

$$
-\mathbf{m} \quad M \quad \text { order of sequence }
$$[25]

-l L frame length [256]

EXAMPLE

In the example below, the input file data. f is in float format. Here, the frame length and period are of 256 and 100, respectively. Also, every frame is passed through a Blackman window and the autocorrelation function sequence is sent to data.acorr.

```
frame -l 256 -p 100 < data.f | window | acorr -m 10 > data.acorr
```


SEE ALSO

c2acn, levdur

NAME

agcep - adaptive generalized cepstral analysis[9]

SYNOPSIS

$$
\begin{gathered}
\text { agcep }[-\mathbf{m} M][-\mathbf{c} C][-\mathbf{l} L][-\mathbf{t} T][-\mathbf{k} K][-\mathbf{p} P] \\
{[-\mathbf{s}][-\mathbf{n}][-\mathbf{e} E][\text { pefile }]<\text { infile }}
\end{gathered}
$$

DESCRIPTION

agcep uses adaptive generalized cepstral analysis [9] to calculate cepstral coefficients $c_{\gamma}(m)$ from unframed float data in the standard input, and sends the result to standard output. In the case pefile is given, agcep writes the prediction error to this file.

Both input and output files are in float format.
The algorithm which recursively calculates the adaptive generalized cepstral coefficients is shown below.

$$
\begin{aligned}
\boldsymbol{c}_{\gamma}^{(n+1)} & =\boldsymbol{c}_{\gamma}^{(n)}-\mu^{(n)} \hat{\nabla} \varepsilon_{\tau}^{(n)} \\
\hat{\nabla} \varepsilon_{0}^{(n)} & =-2 e_{\gamma}(n) \boldsymbol{e}_{\gamma}^{(n)} \quad(\tau=0) \\
\hat{\nabla} \varepsilon_{\tau}^{(n)} & =-2(1-\tau) \sum_{i=-\infty}^{n} \tau^{n-i} e_{\gamma}(i) \boldsymbol{e}_{\gamma}^{(i)} \quad(0 \leq \tau<1) \\
\hat{\nabla} \varepsilon_{\tau}^{(n)} & =\tau \hat{\nabla} \varepsilon_{\tau}^{(n-1)}-2(1-\tau) e_{\gamma}(n) \boldsymbol{e}_{\gamma}^{(n)} \\
\mu^{(n)} & =\frac{k}{M \varepsilon^{(n)}} \\
\varepsilon^{(n)} & =\lambda \varepsilon^{(n-1)}+(1-\lambda) e_{\gamma}^{2}(n)
\end{aligned}
$$

where $\boldsymbol{c}_{\gamma}=\left[c_{\gamma}(1), \ldots, c_{\gamma}(M)\right]^{\top}, \boldsymbol{e}_{\gamma}=\left[e_{\gamma}(n-1), \ldots, e_{\gamma}(n-M)\right]^{\top}$. The signal $e_{\gamma}(n)$ is obtained by passing the input signal $x(n)$ through the filter $(1+\gamma F(z))^{-\frac{1}{\gamma}-1}$, where

$$
F(z)=\sum_{m=1}^{M} c_{\gamma}(m) z^{-m} .
$$

In the case where $\gamma=-1 / n$ and n is a natural number, the adaptive generalized cepstral analysis system is as shown in Figure \mathbb{I}. In the case $n=1$, the adaptive generalized cepstral analysis is equivalent to the LMS linear predictor. Also, when $n \rightarrow \infty$, the adaptive generalized cepstral analysis is equivalent to the adaptive cepstral analysis.

(a) $-1 \leq \gamma \leq 0$

(b) $\gamma=-1$

(c) $\gamma=0$

Figure 1: Adaptive generalized cepstral analysis system

OPTIONS

$\mathbf{- m}$	M	order of generalized cepstrum	$[25]$
$\mathbf{- c}$	C	power parameter $\gamma=-1 / C$ for generalized cepstrum	$[1]$
$\mathbf{-}$	L	leakage factor λ	$[0.98]$
$\mathbf{- t}$	T	momentum constant τ	$[0.9]$
$\mathbf{- k}$	K	step size k	$[0.1]$
$\mathbf{- p}$	P	output period of generalized cepstrum	$[1]$
$\mathbf{- s}$		output smoothed generalized cepstrum	[FALSE]
$\mathbf{- n}$		output normalized generalized cepstrum	[FALSE]
$\mathbf{- e}$	E	minimum value for $\varepsilon^{(n)}$	$[0.0]$

EXAMPLE

In this example, the speech data is in the file data.f in float format and the prediction error can be found in data.er. The cepstral coefficients are written to the file data.agcep,

$$
\text { agcep -m } 15 \text { data.er < data.f > data.agcep }
$$

SEE ALSO

acep, amcep, glsadf

NAME

amcep - adaptive mel-cepstral analysis[11, 12]

SYNOPSIS

$$
\text { amcep } \quad[-\mathbf{m} M][-\mathbf{a} A][-\mathbf{l} L][-\mathbf{t} T][-\mathbf{k} K][-\mathbf{p} P][-\mathbf{s}][-\mathbf{e} E]
$$

$[-\mathrm{P} P a][$ pefile $]<$ infile

DESCRIPTION

amcep uses adaptive mel-cepstral analysis to calculate mel-cepstral coefficients $c_{\alpha}(m)$ from unframed float data in the standard input, sending the result to standard output. In the case pefile is given, amcep writes the prediction error to this file.

Both input and output files are in float format.
The algorithm which recursively calculates the adaptive mel-cepstral coefficients $b(m)$ is shown below

$$
\begin{aligned}
\boldsymbol{c}^{(n+1)} & =\boldsymbol{b}^{(n)}-\mu^{(n)} \hat{\nabla} \varepsilon_{\tau}^{(n)} \\
\hat{\nabla} \varepsilon_{0}^{(n)} & =-2 e(n) \boldsymbol{e}_{\Phi}^{(n)} \quad(\tau=0) \\
\hat{\nabla} \varepsilon_{\tau}^{(n)} & =-2(1-\tau) \sum_{i=-\infty}^{n} \tau^{n-i} e(i) \boldsymbol{e}_{\Phi}^{(i)} \quad(0 \leq \tau<1) \\
\hat{\nabla} \varepsilon_{\tau}^{(n)} & =\tau \hat{\nabla} \varepsilon_{\tau}^{(n-1)}-2(1-\tau) e(n) \boldsymbol{e}_{\Phi}^{(n)} \\
\mu^{(n)} & =\frac{k}{M \varepsilon^{(n)}} \\
\varepsilon^{(n)} & =\lambda \varepsilon^{(n-1)}+(1-\lambda) e^{2}(n)
\end{aligned}
$$

Figure 1: Filter $\Phi_{m}(z)$
where $\boldsymbol{b}=[b(1), b(2), \ldots, b(M)]^{\top}, \boldsymbol{e}_{\Phi}^{(n)}=\left[e_{1}(n), e_{2}(n), \ldots, e_{M}(n)\right]^{T}, e_{m}(n)$ is the output of the inverse filter, which is obtained as shown in Figure [1, passing $e(n)$ through the filter $\Phi_{m}(z)$.

The coefficients $b(m)$ are equivalent to the coefficients of the MLSA filter, and the melcepstral coefficients $c_{\alpha}(m)$ can be obtained from $b(m)$ through a linear transformation (refer to $\sqrt{6} 2 \mathrm{md}$ and mc 2 b).

Thus, the adaptive mel-cepstral analysis system is shown in figure [].
The filter $1 / D(z)$ is realized by a MLSA filter.

Figure 2: Adaptive mel-cepstral analysis system

OPTIONS

$\mathbf{- m}$	M	order of mel-cepstrum	$[25]$
$\mathbf{- a}$	A	all-pass constant α	$[0.35]$
$\mathbf{- l}$	L	leakage factor λ	$[0.98]$
$\mathbf{- t}$	T	momentum constant τ	$[0.9]$
$\mathbf{- k}$	K	step size k	$[0.1]$
$\mathbf{- p}$	P	output period of mel-cepstrum	$[1]$
$\mathbf{- S}$		output smoothed mel-cepstrum	$[$ FALSE $]$
$\mathbf{- e}$	E	minimum value for $\boldsymbol{\varepsilon}^{(n)}$	$[0.0]$
$\mathbf{- P}$	Pa	number of coefficients of the MLSA filter using the Padé ap-	$[4]$
		proximation. $P a$ should be 4 or 5.	

EXAMPLE

In this example, the speech data is in the file data.f in float format, and the adaptive melcepstral coefficients are written to the file data.amcep for every block of 100 samples:

$$
\text { amcep -m } 15 \text {-p } 100<\text { data.f > data.amcep }
$$

NOTICE

$$
P a=4 \text { or } 5
$$

SEE ALSO

acep, agcep, mc2h, b2mc, mlsadt

NAME

average - calculate mean for each block

SYNOPSIS

average $[-\mathbf{l} L][-\mathbf{n} N][$ infile $]$

DESCRIPTION

average calculates the mean value for every L-length block from infile (or standard input), sending the result to standard output.
For the input data

$$
x(0), x(1), \ldots, x(L-1)
$$

the output is calculated as follows:

$$
\frac{x(0)+x(1)+\ldots+x(L-1)}{L}
$$

If $L=0$, then the whole input data is used to calculate the average.
Both input and output files are in float format.

OPTIONS

-l L number of items contained 1 frame
-n N order of items contained 1 frame

EXAMPLE

The output file data.av contains the mean taken from the whole data in data.f, in float format.

```
average < data.f > data.av
```


NOTICE

If $L>0$, calculate average frame by frame.

SEE ALSO

histogram, vsum, vstat

NAME

b2mc - transform MLSA digital filter coefficients to mel-cepstrum

SYNOPSIS

b2mc [-m M][-a A][infile]

DESCRIPTION

$b 2 m c$ calculates mel-cepstral coefficients $c_{\alpha}(m)$ from MLSA filter coefficients $b(m)$ in the infile (or standard input), sending the result to standard output.
Input and output data are in float format.
The transformation from $b(m)$ coefficients to mel-cepstral coefficients $c_{\alpha}(m)$ is as follows:

$$
c_{\alpha}(m)= \begin{cases}b(M) & m=M \\ b(m)+\alpha b(m+1) & 0 \leq m<M\end{cases}
$$

The command $b 2 m c$ and $m c 2 b$ are in inverse conversion relationship to each other.

OPTIONS

$$
\begin{array}{lll}
\mathbf{- m} & M & \text { order of mel cepstrum } \\
\mathbf{- a} & A & \text { all-pass constant } \alpha \tag{0.35}
\end{array}
$$

EXAMPLE

The example below converts the coefficients of an MLSA filter, which are in file data.b in float format, into mel-cepstral coefficients in file data.mcep, with $M=15$ and $\alpha=$ 0.35 .

$$
\text { b2mc -m } 15 \text { < data.b > data.mcep }
$$

SEE ALSO

mc2b, micep, msadf

NAME
bcp - block copy

SYNOPSIS

$$
\begin{aligned}
\text { bcp } & {[-\mathbf{l} l][-\mathbf{L} L][-\mathbf{n} n][-\mathbf{N} N][-\mathbf{s} s][-\mathbf{S} S][-\mathbf{e} e][-\mathbf{f} f] } \\
& {[+ \text { type }][\text { infile }] }
\end{aligned}
$$

DESCRIPTION

$b c p$ copies data blocks from infile (or standard input) to standard output, and reformats them according to the command line options given.

If the input format is ASCII, the basic input unit is a sequence of letters and the output block is partitioned with carriage returns.

Figure 3: Example of the bcp command

OPTIONS

$\mathbf{-}$	l	number of items contained 1 block	$[512]$
$\mathbf{-}$	L	number of destination block size	$[\mathrm{N} / \mathrm{A}]$
$\mathbf{- n}$	n	order of items contained 1 block	$[1-1]$
$\mathbf{- N}$	N	order of destination block size	$[\mathrm{N} / \mathrm{A}]$
$\mathbf{- s}$	s	start number	$[0]$
$\mathbf{- S}$	S	start number in destination block	$[0]$
$\mathbf{-}$	e	end number	$[\mathrm{EOF}]$
$\mathbf{- f}$	f	fill into empty block	$[0]$

$$
+t \quad \text { data type }
$$

c	char (1 byte)	C	unsigned char (1 byte)
s	short (2 bytes)	S	unsigned short (2 bytes)
i3	int (3 bytes)	I3	unsigned int (3 bytes)
i	int (4 bytes $)$	I	unsigned int (4 bytes)
1	long (4 bytes)	L	unsigned long (4 bytes)
le	long long $(8$ bytes $)$	LE	unsigned long long (8 bytes)
f	float (4 bytes)	d	double (8 bytes)
a	ASCII letter sequence		

EXAMPLE

Assume that $\mathrm{a}(0), \mathrm{a}(1), \mathrm{a}(2), \ldots, \mathrm{a}(20)$ is contained in the input file data. f, written in float format. If one wants to copy the array $a(1), a(2), \ldots, a(10)$, the following command can be used.

$$
\text { bcp +f -l } 21 \text {-s } 1 \text {-e } 10 \text { data. } f>\text { data.bcp }
$$

A different example with respect to the same input file data.f follows

$$
\text { bcp +f -l } 21 \text {-s } 3 \text {-e } 5 \text {-S } 6 \text {-L } 10 \text { data.f > data.bcp }
$$

In this example, the output block is

$$
0,0,0,0,0,0, a(3), a(4), a(5), 0
$$

NOTICE

When both $(-\mathrm{L}$ and -N$)$ or $(-1$ and -n$)$ are specified, latter argument is adopted.

SEE ALSO

bcut, merge, reverse

NAME
bcut - binary file cut

SYNOPSIS

bcut $[-\mathbf{s} S][-\mathbf{e} E][-\mathbf{l} L][-\mathbf{n} N][+$ type $][$ infile $]$

DESCRIPTION

bcut copies a selected portion of infile (or standard input) to standard output.

OPTIONS

-s \quad S	start number		
-e E	end number		
-l L	block length		
-n N	block order		
$+t$	input data format		
	c char (1 byte)	C	unsigned char (1 byte)
	s short (2 bytes)	S	unsigned short (2 bytes)
	i3 int (3 bytes)	I3	unsigned int (3 bytes)
	i int (4 bytes)	I	unsigned int (4 bytes)
	1 long (4 bytes)	L	unsigned long (4 bytes)
	le long long (8 bytes)	LE	unsigned long long (8 bytes)
	f float (4 bytes)	d	double (8 bytes)

EXAMPLE

In the example below, the input file data.f in float format is cut from the 3 rd to the 5 th float point:

$$
\text { bcut }+\mathrm{f} \text {-s } 3 \text {-e } 5 \text { data.f > data.cut }
$$

For example, if the file data.f had the following data

$$
1,2,3,4,5,6,7
$$

the output file data.cut would be

$$
4,5,6 .
$$

If the block length is assigned:

```
bcut +f -l 2 data.f -s 1 -e 2 > data.cut
```

then, the output file would contain the following data,

$$
3,4,5,6
$$

If the stationary part, say from the sample 100, of the output of a digital filter excited with pulse train is desired, then the following command can be used:

$$
\text { train -p } 10 \text {-l } 256 \text { | dfs -a } 10.80 .6 \mid \text { bcut +f -s } 100 \text { > data.cut }
$$

In this case, the file data.cut will contain 156 points.
If we generate a data.f file passing a sinusoidal signal through a 256-length window as follows

$$
\text { sin -p } 30 \text {-1 } 2000 \text { | window > data.f }
$$

and we want to take only the third window output, we could use the following command:

$$
\text { bcut +f -l } 256 \text {-s } 3 \text {-e } 3 \text { < data.f > data.cut }
$$

NOTICE

When both -1 and -n are specified, latter argument is adopted.

SEE ALSO

bcp, merge, reverse

NAME
bell - ring a bell

SYNOPSIS

bell [num]

DESCRIPTION

bell rings a bell num times.

OPTIONS

num number of times bell rings

NOTICE

num : number of bell [1]

EXAMPLE

This example rings bell 10 times:
bell 10

NAME
c2acr - transform cepstrum to autocorrelation

SYNOPSIS

c2acr $\quad\left[-\mathbf{m} M_{1}\right]\left[-\mathbf{M} M_{2}\right][-1 L][$ infile $]$

DESCRIPTION

$c 2$ acr calculates M_{2}-th order autocorrelation coefficients from M_{1}-th order cepstral coefficients in the infile (or standard input), writing the result to standard output. Given the cepstral coefficients

$$
c(0), c(1), \ldots, c\left(M_{1}\right)
$$

the corresponding autocorrelation coefficients are given by

$$
r(0), r(1), \ldots, r\left(M_{2}\right)
$$

Both input and output files are in float format.
The power spectrum is calculated from the logarithm spectrum, which is obtained from the Fourier transform of the M_{1}-th order cepstral coefficients. The autocorrelation coefficients are obtained through the inverse Fourier transform of the power spectrum.

OPTIONS

$$
\begin{array}{llll}
\mathbf{- m} & M_{1} & \text { order of cepstrum } & {[25]} \\
\mathbf{- M} & M_{2} & \text { order of autocorrelation } & {[25]} \\
\mathbf{- \mathbf { l }} & L & \text { FFT length } & {[256]}
\end{array}
$$

EXAMPLE

In the following example, the $15-$ th order linear prediction coefficients are calculated from the 30-th order cepstral coefficients in data.cep and the result is sent to the data.lpc.

```
c2acr -m 30 -M 15 < data.cep | levdur -m 15 > data.lpc
```


SEE ALSO

NAME

c2ir - cepstrum to minimum phase impulse response

SYNOPSIS

$$
\text { c2ir } \quad[-\mathbf{l} L]\left[-\mathbf{m} M_{1}\right]\left[-\mathbf{M} M_{2}\right][-\mathbf{i}][\text { infile }]
$$

DESCRIPTION

$c 2 i r$ calculates the minimum phase impulse response from the minimum phase cepstral coefficients in the infile (or standard input), sending the result to standard output. For example, if the input sequence is

$$
c(0), c(1), c(2), \ldots, c\left(M_{1}\right)
$$

then the impulse response is calculated as

$$
h(n)=\left\{\begin{array}{l}
h(0)=\exp (c(0)) \\
h(n)=\sum_{k=1}^{M_{1}} \frac{k}{n} c(k) h(n-k) \quad n \geq 1
\end{array}\right.
$$

and the output will be given by

$$
h(0), h(1), h(2), \ldots, h(L-1)
$$

Both input and output files are in float format.

OPTIONS

$\mathbf{- m}$	M_{1}	order of cepstrum	$[25]$
$\mathbf{- M}$	M_{2}	length of impulse response	$[\mathrm{L}-1]$
$\mathbf{- \mathbf { l }}$	L	order of impulse response	[256]
$\mathbf{- i}$		input minimum phase sequence	[FALSE]

If the number of cepstral coefficients M_{1} is not assigned and the order of the cepstral analysis is less then L, then the number of coefficients read is made equal to M_{1}.

EXAMPLE

The output file data.ir contains the impulse response in the range $n=0 \sim 99$ obtained from the 30-th order cepstral coefficients file data.cep, in float format:

```
c2ir -l 100 -m 30 data.cep > data.ir
```


SEE ALSO

NAME
c2ndps - cepstrum to Negative Derivative of Phase Spectrum (NDPS)[27]

SYNOPSIS

c2ndps [-l L][-m M][-p][-z][infile]

DESCRIPTION

c2ndps calculates the Negative Derivative of Phase Spectrum (NDPS) from the real mixed phase cepstrum coefficients in the infile (or standard input), sending the result to standard output. For example, if the input sequence is

$$
c(0), c(1), c(2), \ldots, c(M)
$$

then the \log spectrum is calculated as

$$
\ln S(\omega)=\sum_{m=0}^{M} c(m) \mathrm{e}^{-j \omega m} .
$$

$\ln S(\omega)$ can be decomposed into the real part and imaginary part, that is, the magnitude and phase spectrum as

$$
\ln |S(\omega)|+j \arg S(\omega)=\sum_{m=0}^{M} c(m) \mathrm{e}^{-j \omega m} .
$$

Then, partially differentiate the both sides of the above equation by ω, one can obtain

$$
\frac{\partial}{\partial \omega} \ln |S(\omega)|+j \frac{\partial}{\partial \omega} \arg S(\omega)=-j \sum_{m=0}^{M} m c(m) \mathrm{e}^{-j \omega m}
$$

Finally, from the imaginary part of the above equation, Negative Derivative of Phase Spectrum (NDPS) can be obtained as

$$
-\frac{\partial}{\partial \omega} \arg S(\omega)=\sum_{m=0}^{M} m c(m) \cos \omega m .
$$

From the above derivation, NDPS is also equivalent to the real part of DFT of $m c(m)$:

$$
n(k)=\operatorname{Re}\left[\sum_{m=0}^{M} m c(m) \mathrm{e}^{-j \frac{2 \pi k m}{N}}\right] \quad(k=0, \cdots, N-1) .
$$

Both input and output files are in float format. The output file contains the $n(k)$ in the range $k=0, \cdots, N / 2$.

Additionally, the -p or -z option can be used to output NDPS as follows. If the -p option is specified,

$$
n(k)= \begin{cases}n(k), & n(k)>0 \\ 0 & n(k)<0\end{cases}
$$

If the -z option is specified,

$$
n(k)= \begin{cases}0, & n(k)>0 \\ n(k) & n(k)<0\end{cases}
$$

$n(k)$ doesn't comprehend the $\mathrm{c}(0)$.

OPTIONS

$$
\begin{array}{llll}
-\mathbf{m} & M & \text { order of cepstrum } & {[25]} \tag{25}\\
-\mathbf{l} & L & \text { FFT length } & {[256]}
\end{array}
$$

(level 2)

$\mathbf{- p}$	extract only pole part
$\mathbf{- z}$	extract only zero part

[FALSE]
[FALSE]

EXAMPLE

The output file data.ir contains the $n(k)$ in the range $k=0, \cdots, 1024$ obtained from the 30-th order cepstral coefficients file data.cep, in float format:

$$
\text { c2ndps -1 } 2048 \text {-m } 30 \text { data.cep > data.ndps }
$$

SEE ALSO

mgcep, ndps2c

NAME
c2sp - transform cepstrum to spectrum

SYNOPSIS

$$
\mathbf{c 2 s p} \quad[-\mathbf{m} M][-\mathbf{l} L][-\mathbf{p}][-\mathbf{o} O][\text { infile }]
$$

DESCRIPTION

$c 2 s p$ calculates the spectrum from the minimum phase cepstrum from infile (or standard input), sending the result to standard output. Input and output data are in float format.

OPTIONS

$\mathbf{- m}$	M	order of cepstrum	[25]
$\mathbf{- l}$	L	frame length	[256]
$\mathbf{- p}$		output phase	[FALSE]
$\mathbf{- 0}$	O	output format	[0]
		if the "- $\mathrm{p} "$ option is not assigned then	

$$
\begin{array}{ll}
O=0 & 20 \times \log |H(z)| \\
O=1 & \ln |H(z)| \\
O=2 & |H(z)|
\end{array}
$$

if the " -p " option is assigned then

$$
\begin{array}{lll}
O=0 & \arg |H(z)| \div \pi & {[\pi \mathrm{rad} .]} \\
O=1 & \arg |H(z)| & {[\mathrm{rad} .]} \\
O=2 & \arg |H(z)| \times 180 \div \pi & {[\text { deg. }]}
\end{array}
$$

EXAMPLE

The example below takes the 15 -th order cepstrum from the file data.cep in float format, evaluates the running spectrum, and presents it in the screen:

$$
\text { c2sp -m } 15 \text { data.cep | grlogsp | xgr }
$$

SEE ALSO

mels, mgc2sp

NAME
cdist - calculation of cepstral distance

SYNOPSIS

cdist $[-\mathbf{m} M][-\mathbf{O} O][-\mathbf{f}]$ cfile $[$ infile $]$

DESCRIPTION

cdist calculates the cepstral distance between the cepstral coefficients in infile (or standard input) and the ones in cfile, sending the result to standard output. For example, if the cepstral coefficients of the infile at frame t are

$$
c_{1, t}(0), c_{1, t}(1), c_{1, t}(2), \ldots, c_{1, t}(M)
$$

and the cepstral coefficients in cfile at frame t are

$$
c_{2, t}(0), c_{2, t}(1), c_{2, t}(2), \ldots, c_{2, t}(M)
$$

then the squared cepstrum distance for every frame is given by

$$
d(t)=\sum_{k=1}^{M}\left(c_{1, t}(k)-c_{2, t}(k)\right)^{2}
$$

and the total cepstral distance between both files is

$$
d=\frac{1}{T} \sum_{t=0}^{T-1} d(t)
$$

If the number of frames in the two files is different, then cdist will consider the smallest number for the evaluation.

OPTIONS

-m $\quad M \quad$ order of minimum-phase cepstrum
-0 O output format

$$
\begin{array}{lll}
O=0 & \frac{10}{\ln 10} \sqrt{2 d(t)} & {[\mathrm{db}]} \\
O=1 & d(t) & \\
O=2 & \sqrt{d(t)}
\end{array}
$$

-f output frame by frame
[FALSE]

EXAMPLE

In the example below, the squared spectral distance of the 15 -th order cepstrum files datal.cep and data2.cep, both in float formats, is evaluated and displayed:

```
cdist -m 15 data1.cep data2.cep | dmp +f
```


SEE ALSO

acep, agcep, amcep, mincep

NAME
clip - data clipping

SYNOPSIS

$\mathbf{c l i p}\left[-\mathbf{y} y_{\min } y_{\max }\right]\left[-\mathbf{y m i n} y_{\min }\right]\left[-\mathbf{y m a x} y_{\max }\right][$ infile $]$

DESCRIPTION

clip clips the data from infile (or standard input) between the minimum and maximum values specified on the command line, sending the result to standard output.
Input and output data are in float format.

OPTIONS

$-\mathbf{y}$	$y_{\min } y_{\max }$	lower bound \& upper bound	$[-1.01 .0]$
$-\mathbf{y m i n}$	$y_{\min }$	lower bound $(\mathrm{ymax}=\mathrm{inf})$	$[\mathrm{N} / \mathrm{A}]$
$-\mathbf{y m a x}$	$y_{\max }$	upper bound $(\mathrm{ymin}=-\mathrm{inf})$	$[\mathrm{N} / \mathrm{A}]$

EXAMPLE

Suppose that the data in data. f is in float format and presents the following values,

$$
1.0,2.0,3.0,4.0,5.0,6.0
$$

If we type the command

$$
\text { clip -y } 2.55 .5 \text { < data.f > data.clip }
$$

then the output data.clip will contain the following values.

NAME
da - play 16-bit linear PCM data

SYNOPSIS

da $[-\mathbf{s} S][-\mathbf{c} C][-\mathbf{g} G][-\mathbf{a} A][-\mathbf{o} O][-\mathbf{w}][-\mathbf{H} H]$
[-v] [+type] [infile1] [infile2] ...

DESCRIPTION

da plays a series of input files (or standard input) on a system-dependent audio output device. If the system does not support the specified sampling frequency, da up-samples the data to a supported frequency. This command can be used under Linux (i386), FreeBSD (i386 newpem driver), SunOS 4.1.x, SunOS 5.x (SPARC).
It is possible to change the environment settings through the following options
DA_GAIN gain
DA_AMPGAIN amplitude gain
DA_PORT output port
DA_HDRSIZE header size
DA_FLOAT set the input data to float

OPTIONS

$\mathbf{- s}$	S	sampling frequency, it can be used the following sampling fre- quencies 8, 10, 11.025, 12, 16, 20, 22.05, 32, 44.1, $48(\mathrm{kHz})$.	$[10]$
$\mathbf{- g}$	G	gain	$[0]$
$\mathbf{- a}$	A	amplitude gain(0..100)	$[\mathrm{N} / \mathrm{A}]$
$\mathbf{- \mathbf { o }}$	O	output port(s : speaker, h : headphone)	[s]
$\mathbf{- w}$		execute byte swap	[FALSE]
$\mathbf{- H}$	H	header size in byte	[0]
$\mathbf{- v}$		display filename	[FALSE]
+type	input data format	[f]	

c	char (1 byte)	C	unsigned char (1 byte)
s	short (2 bytes)	S	unsigned short (2 bytes)
i3	int $(3$ bytes $)$	I3	unsigned int (3 bytes)
i	int $(4$ bytes $)$	I	unsigned int (4 bytes)
1	long (4 bytes $)$	L	unsigned long (4 bytes)
le	long long (8 bytes $)$	LE	unsigned long long (8 bytes)
f	float (4 bytes $)$	d	double (8 bytes)

EXAMPLE

In the following example, the speech data file data.s is played on the headphone. The sampling frequency is 8 kHz , and the input data is in short format.

```
da +s -s 8 -o h data.s
```


NOTICE

In Linux operating systems, the output port can not be assigned.

NAME
dct - DCT-II

SYNOPSIS

dct $\quad[-\mathbf{l} L][-\mathbf{I}][-\mathbf{d}][$ infile $]$

DESCRIPTION

$d c t$ calculates the Discrete Cosine Transform II (DCT-II) of the input data in the infile (or standard input), sending the results to standard output. The input and output data are both in float format, and arranged as follows.

The Discrete Cosine Transform II can be written as:

$$
X_{k}=\sqrt{\frac{2}{L}} c_{k} \sum_{l=0}^{L-1} x_{l} \cos \left\{\frac{\pi}{L} k\left(l+\frac{1}{2}\right)\right\}, \quad l=0,1, \cdots, L
$$

where

$$
c_{k}= \begin{cases}1 & (1 \leq k \leq L-1) \\ 1 / \sqrt{2} & (k=0)\end{cases}
$$

OPTIONS

-l	L	DCT size
-I		use complex number
-d		don't use FFT algorithm

EXAMPLE

In this example, the DCT is evaluated from a complex-valued data file data.f in float format (real part: 256 points, imaginary part: 256 points), and the output is written to data.dct:

$$
\text { dct data.f -1 } 256 \text {-I > data.dct }
$$

SEE ALSO

fite, idet

NAME

decimate - decimation (data skipping)

SYNOPSIS

decimate $[-\mathbf{p} P][-\mathbf{S} S][-\mathbf{l} L][$ infile $]$

DESCRIPTION

decimate picks up a sequence of input data from infile (or standard input) with interval P and start number S, sending the result to standard output.
If the input data is

$$
x(0), x(1), x(2), \ldots
$$

then the output data is given by:

$$
x(S), x(S+P), x(S+2 P), x(S+3 P), \ldots
$$

Input and output data are in float format.

OPTIONS

-l $\quad L \quad$ length of vector
-p $\quad P$ decimation period
-s $\quad S \quad$ start sample

EXAMPLE

This example decimates input data from data.f file with interval 2, interpolates 0 with interval 2, and then outputs the results to the file data.di:

$$
\text { decimate -p } 2 \text { < data.f | interpolate -p } 2 \text { > data.di }
$$

SEE ALSO

interpolate

NAME
delay - delay sequence

SYNOPSIS

```
delay [-s \(S\) ][-f][infile]
```


DESCRIPTION

delay delays the data in infile (or standard input) by inserting a specified number of zero samples at the beginning, and sends the result to standard output. For example, if we want to delay the following data

$$
x(0), x(1), \ldots, x(T)
$$

as in

$$
\underbrace{0, \ldots, 0}_{S}, x(0), x(1), \ldots, x(T) .
$$

We only need to set the "-s" option to S

$$
\underbrace{0, \ldots, 0}_{S}, x(0), x(1), \ldots, x(T-S) .
$$

Both input and output files are in float format.

OPTIONS

-s	S	start sample
-f		keep file length

EXAMPLE

If we have the following data in the input data.f file

$$
1.0,2.0,3.0,4.0,5.0,6.0
$$

and we use the command below

$$
\text { delay -s } 3 \text { < data.f > data.delay }
$$

then the output file data.delay will be

$$
0.0,0.0,0.0,1.0,2.0,3.0,4.0,5.0,6.0
$$

As another example, if we want to keep the same size of the input file, we can use the following command,

$$
\text { delay -s } 3-f<\text { data.f > data.delay }
$$

and the output data.delay will be

$$
0.0,0.0,0.0,1.0,2.0,3.0
$$

NAME
delta - delta calculation

SYNOPSIS

$$
\begin{array}{ll}
\text { delta } & {[-\mathbf{m} M][-\mathbf{l} L][-\mathbf{t} T]\left[-\mathbf{d}\left(f n \mid d_{0}\left[d_{1} \ldots\right]\right)\right]\left[\mathbf{- r} N_{R} W_{1}\left[W_{2}\right]\right]} \\
& {\left[-\mathbf{R} N_{R} W_{F 1} W_{B 1}\left[W_{F 2} W_{B 2}\right]\right][-\mathbf{M} \text { magic }][-\mathbf{n} N][-\mathbf{e} e][\text { infile }]}
\end{array}
$$

DESCRIPTION

delta calculates dynamic features from infile (or standard input), sending the result (static and dynamic features) to the standard output. Input and output are of the form:

$$
\begin{aligned}
& \text { input } \ldots, x_{t}(0), \ldots, x_{t}(M), \ldots \\
& \text { output } \ldots, x_{t}(0), \ldots, x_{t}(M), \Delta^{(1)} x_{t}(0), \ldots, \Delta^{(1)} x_{t}(M), \ldots, \Delta^{(n)} x_{t}(0), \ldots, \Delta^{(n)} x_{t}(M), \ldots
\end{aligned}
$$

Also, input and output data are in float format. The dynamic feature vector $\Delta^{(n)} \boldsymbol{x}_{t}$ can be obtained from the static feature vector as follows.

$$
\Delta^{(n)} \boldsymbol{x}_{t}=\sum_{\tau=-L^{(n)}}^{L^{(n)}} w^{(n)}(\tau) \boldsymbol{x}_{t+\tau}
$$

where n is the order of the dynamic feature vector. For example, when we evaluate the Δ^{2} parameter, $n=2$.

OPTIONS

length of vector
$f n$ is the file name of the parameters $w^{(n)}(\tau)$ used when evaluating the dynamic feature vector. It is assumed that the number of coefficients to the left and to the right are the same. In case this is not true, then zeros are added to the shortest side. For example, if the coefficients are given by:

$$
w(-1), w(0), w(1), w(2), w(3)
$$

then zeros must be added to the left as follows.

$$
0,0, w(-1), w(0), w(1), w(2), w(3)
$$

Instead of entering the filename $f n$, the coefficients(which compose the file $f n$) can be directly inputted from the command line. When the order of the dynamic feature vector is higher than one, then the sets of coefficients can be inputted one after the other as shown in the example below. This option cannot be used with the -r nor -R options.

-r	$N_{R} W_{1}\left[W_{2}\right]$	This option is used when N_{R}-th order dynamic parameters are used and the weighting coefficients $w^{(n)}(\tau)$ are evaluated by regression. N_{R} can be made equal to 1 or 2. The variables W_{1} and W_{2} represent the widths of the first and second order regression coefficients, respectively. The first order regression coefficients for $\Delta \boldsymbol{x}_{t}$ at frame t are evaluated as follows. $\Delta \boldsymbol{x}_{t}=\frac{\sum_{\tau=-W_{1}}^{W_{1}} \tau \boldsymbol{c}_{t+\tau}}{\sum_{\tau=-W_{1}}^{W_{1}} \tau^{2}}$	/A]
		For the second order regression coefficients, $a_{2}=\sum_{\tau=-W_{2}}^{W_{2}} \tau^{4}, a_{1}=\sum_{\tau=-W_{2}}^{W_{2}} \tau^{2}$, $a_{0}=\sum_{\tau=-W_{2}}^{W_{2}} 1$ and $\Delta^{2} \boldsymbol{x}_{t}=\frac{2 \sum_{\tau=-W_{2}}^{W_{2}}\left(a_{0} \tau^{2}-a_{1}\right) \boldsymbol{x}_{t+\tau}}{a_{2} a_{0}-a_{1}^{2}}$	
-R	$N_{R} W_{F 1} W_{B 1}\left[W_{F 2} W_{B 2}\right]$	This option cannot be used with the -d nor -R options. Similarly to the -r option, by using this option, we can obtain N_{R}-th order dynamic feature parameters and the weighting coefficients will be evaluated by regression. N_{R} can be made equal to 1 or 2 . The variables $W_{F i}$ and $W_{B i}$ represent the width of the $i-$ th order regression coefficients in the forward and backward direction, respectively. Combining this option with the -M option, the regression coefficients can be evaluated skipping the magic number from the input. This option cannot be used with the -d nor	[N/A]
-M	magic	-r options. The magic number magic can be skipped from the input during the calculation of the dynamic features. This option is valid only when the -R option is also specified.	[N/A]
-n	N	N is the order of regression polynomial. Note that N must be less than or equal to $\max _{i=1}\left(W_{F i}+W_{B i}\right)$.	[N/A]
-e	e	sindall value added to diagonal component for calculating inverse matrix	[0.0]

EXAMPLE

In the example below, the first and second order dynamic features are calculated from 15 -dimensional coefficient vectors from data.static using windows whose width are 1. The resultant static and dynamic features are sent to data.delta:

```
delta -m 15 -r 2 1 1 data.static > data.delta
```

or

```
echo "-0.5 0 0.5" | x2x +af > delta
echo "1.0 -2.0 1.0" | x2x +af > accel
delta -m 15 -d delta -d accel data.static > data.delta
```

Another example is presented bellow, where the first and second order dynamic features are calculated from the scalar sequence in data.f0, sending windows with 2 units width and skipping the magic number -1.0E15.

$$
\text { delta -1 } 1 \text {-R } 22222 \text {-M -1.0E15 data.f0 > data.delta }
$$

SEE ALSO

mlpg

NAME
df2 - second order standard form digital filter

SYNOPSIS

df2 $[\mathbf{- s} S]\left[-\mathbf{p} f_{1} b_{1}\right]\left[\mathbf{- z} f_{2} b_{2}\right][$ infile $]$

DESCRIPTION

$d f 2$ filters data from infile (or standard input) using a second order digital filter in standard form, sending the result to standard output. The central frequency and frequency band can be both assigned through the options, shown bellow. The filter transfer function is given by:

$$
H(z)=\frac{1-2 \exp \left(-\pi b_{2} / f_{0}\right) \cos \left(2 \pi f_{2} / f_{0}\right) z^{-1}+\exp \left(-2 \pi b_{2} / f_{0}\right) z^{-2}}{1-2 \exp \left(-\pi b_{1} / f_{0}\right) \cos \left(2 \pi f_{1} / f_{0}\right) z^{-1}+\exp \left(-2 \pi b_{1} / f_{0}\right) z^{-2}}
$$

Also, if this command is used in cascade, an arbitrary filter can be designed by using the options -p and -z . Input and output data are in float format.

OPTIONS

-s $\quad S \quad$ sampling frequency $S[\mathrm{kHz}]$
-p $\quad f_{1} b_{1} \quad$ center frequency $f_{1}[\mathrm{~Hz}]$ and band width $b_{1}[\mathrm{~Hz}]$ of pole
-z $\quad f_{2} b_{2}$ center frequency $f_{2}[\mathrm{~Hz}]$ and band width $b_{2}[\mathrm{~Hz}]$ of zero

EXAMPLE

The command below gives the impulse response of a filter with a pole at 2000 Hz and a frequency band of 200 Hz :

NAME
dfs - digital filter in standard form

SYNOPSIS

dfs $[-\mathbf{a} K a(1) \ldots a(M)][-\mathbf{b} b(0) b(1) \ldots b(N)][-\mathbf{p}$ pfile][-z zfile]
[infile]

DESCRIPTION

$d f s$ filters data from infile (or standard output) using a digital filter in standard form, sending the result to standard output. The filter transfer function is given by:

$$
H(z)=K \frac{\sum_{n=0}^{N} b(n) z^{-n}}{1+\sum_{m=1}^{M} a(m) z^{-m}}
$$

Both input and output files are in float format.

OPTIONS

-a	$K a(1) \ldots a(M)$	denominator coefficients, where K is the gain of the transfer function	[N/A]
-b	$b(0) b(1) \ldots b(N)$	numerator coefficients	[N/A]
-p	pfile	denominator coefficients file in float format as follows $K, a(1), \ldots, a(M)$	[NULL]
-z	zfile	numerator coefficients file in float format as follows	[NULL]

If the option $\mathbf{- a}$ and $\mathbf{- p}$ are not specified, then both K and the denominator are set to 1 . On the other hand, if the option $\mathbf{- b}$ and $\mathbf{- z}$ are not specified, then the numerator is set to 1.

EXAMPLE

In order to visualize the impulse response of the following transfer function

$$
H(z)=\frac{1+2 z^{-1}+z^{-2}}{1+0.9 z^{-1}}
$$

the command below can be used

```
impulse | dfs -a 1 0.9 -b 1 2 1 | dmp +f
```

For visualizing the frequency response plot of the digital filter, whose coefficients are defined in float format by the files data.p, data.z, then the following command can be used.
impulse | dfs -p data.p -z data.z | spec | fdrw | xgr

The files data.p and data.z can be obtained through the $x 2 x$ command.

NAME
dmp - binary file dump

SYNOPSIS

dmp $[-\mathbf{n} N][-\mathbf{l} L][+$ type $][$ \%form $][$ infile $]$

DESCRIPTION

$d m p$ converts data from infile (or standard input) to a human readable form, (one sample per line, with line numbers) and sends the result to standard output.

OPTIONS

EXAMPLE

In this example, data is read from the input file data. f in float format, and the enumerated data is shown on the screen:

$$
\text { dmp }+f \text { data.f }
$$

For example, if the data.f file has the following values in float format

$$
1,2,3,4,5,6,7
$$

then the following output will be displayed on the screen:

0	1
1	2
2	3
3	4
4	5

5	6
6	7

In case one wants to assign a block length the following command can be used.

```
dmp +f -n 2 data.f
```

And the output will be given by:

0	1
1	2
2	3
0	4
1	5
2	6
0	7

Some other examples are provided bellow:
Print the unit impulse response of a digital filter on the screen:
impulse | dfs -a 10.9 | dmp +f
Print a sine wave using the \%e option of printf:

$$
\sin -p 30 \mid d m p+f \% e
$$

Print the same sine wave represented by three decimal points:

$$
\sin -p 30 \mid d m p+f \% .3 e
$$

SEE ALSO

X2x, 居

NAME

dtw - dynamic time warping

SYNOPSIS

$$
\begin{aligned}
\mathbf{d t w} & {[-\mathbf{m} M][-\mathbf{l} L][-\mathbf{t} T][-\mathbf{r} R][-\mathbf{n} N][-\mathbf{p} P] } \\
& {[-\mathbf{s} \text { Scorefile }][-\mathbf{v} \text { OutVitfile }][-\mathbf{V} \text { InVitfile }] \text { reffile }[\text { infile }] }
\end{aligned}
$$

DESCRIPTION

$d t w$ carries out dynamic time warping (DTW) between the test data vectors from infile (or standard input) and the reference data vectors from reffile, and sends the result to standard output. The result is the concatenated sequence of the test and the reference data vectors along the Viterbi path. If $-s$ option is specified, the score calculated by dynamic time warping, that is, the distance between the test data and the reference data is output and sent to Scorefile. If -v option is specified, the concatenated frame number sequence along the Viterbi path is output and sent to OutVitfile. On the other hand, if -V option is specified, the concatenated vector sequence of the test and reference data vectors is output based on the content of InVitfile, where the correspondence of the frame numbers between the test and reference data along the Viterbi path is written. The format of InVitfile is the same as OutVitfile. The -V option can be used to improve the conversion accuracy of $v 0$ command.
For example, suppose that the sequences of the test and the reference data vectors are

$$
\begin{array}{r}
\text { test : } \boldsymbol{x}(1), \boldsymbol{x}(2), \ldots, \boldsymbol{x}\left(T_{x}-1\right), \boldsymbol{x}\left(T_{x}\right), \\
\text { reference : } \boldsymbol{y}(1), \boldsymbol{y}(2), \ldots, \boldsymbol{y}\left(T_{y}-1\right), \boldsymbol{y}\left(T_{y}\right),
\end{array}
$$

where T_{x} and T_{y} are the length of the sequence of the test and reference data vectors, respectively. After performing DTW, the following Viterbi sequences

$$
\begin{array}{r}
\text { test : } \boldsymbol{x}\left(\phi_{x}(1)\right), \boldsymbol{x}\left(\phi_{x}(2)\right), \ldots, \boldsymbol{x}\left(\phi_{x}(T-1)\right), \boldsymbol{x}\left(\phi_{x}(T)\right), \\
\text { reference }: ~ \boldsymbol{y}\left(\phi_{y}(1)\right), \boldsymbol{y}\left(\phi_{y}(2)\right), \ldots, \boldsymbol{y}\left(\phi_{y}(T-1)\right), \boldsymbol{y}\left(\phi_{y}(T)\right),
\end{array}
$$

can be obtained, where $\phi_{x}(\cdot)$ and $\phi_{x}(\cdot)$ are the function which maps the Viterbi frame number into the corresponding frame number of test/reference data, respectively. Then, the following sequence

$$
\boldsymbol{x}\left(\phi_{x}(1)\right), \boldsymbol{y}\left(\phi_{y}(1)\right), \boldsymbol{x}\left(\phi_{x}(2)\right), \boldsymbol{y}\left(\phi_{y}(2)\right), \ldots, \boldsymbol{x}\left(\phi_{x}(T)\right), \boldsymbol{y}\left(\phi_{y}(T)\right)
$$

is sent to the standard output. If -v option is specified, the following sequence

$$
\phi_{x}(1), \phi_{y}(1), \phi_{x}(2), \phi_{y}(2), \ldots, \phi_{x}(T), \phi_{y}(T)
$$

is sent to the OutVitfile. On the other hand, if -V option is specified, according to the following sequence written in InVitfile

$$
\phi_{x}(1), \phi_{y}(1), \phi_{x}(2), \phi_{y}(2), \ldots, \phi_{x}(T), \phi_{y}(T),
$$

the following concatenated vector sequence

$$
\boldsymbol{x}\left(\phi_{x}(1)\right), \boldsymbol{y}\left(\phi_{y}(1)\right), \boldsymbol{x}\left(\phi_{x}(2)\right), \boldsymbol{y}\left(\phi_{y}(2)\right), \ldots, \boldsymbol{x}\left(\phi_{x}(T)\right), \boldsymbol{y}\left(\phi_{y}(T)\right)
$$

can be obtained and sent to the standard output.
Both input and output files are in float format. However, InVitfile and OutVitfile which contains the Viterbi frame number sequence is in int format.

OPTIONS

-m	M	order of vector	[0]
-l	L	dimention of vector	[M+1]
-t	T	number of test vectors	[N/A]
-r	R	number of reference vectors	[N/A]
-n	N	type of norm used for calculation of local cost	[2]
		$\begin{array}{ll} N=1 & L_{1} \text {-norm } \\ N=2 & L_{2} \text {-norm } \end{array}$	
-p	P	local path constraint candidates of constraint are shown in figure 4 .	[5]
-s	Scorefile	output score of the dynamic time warping to S corefile.	[FALSE]
-v	OutVitfile	output frame number sequence along the Viterbi path to OutVitfile.	[FALSE]
-V	InVitfile	concatenate test and reference vectors along the Viterbi path information written in InVitfile.	[FALSE]

EXAMPLE

In the example below, a dynamic time warping between the scalar sequence from data.test and the sequence from data.ref is carried out and the concatenated sequence are written to data.out.

```
dtw -l 1 data.ref < data.test > data.out
```


SEE ALSO

$$
P=1
$$

$$
P=2
$$

Figure 4: candidates of local path constraint

NAME
ds - down-sampling

SYNOPSIS

ds $[-\mathrm{s} S][$ infile $]$

DESCRIPTION

$d s$ down-samples data from infile (or standard input), and sends the result to standard output.
Both input and output files are in float format.
The following filter coefficients can be used.

$$
\begin{array}{ll}
S=21 & \text { \$SPTK/share/SPTK/lpfcoef.2to1 } \\
S=32 & \$ \text { SPTK/share/SPTK/lpfcoef.3to2 } \\
S=43 & \$ \text { SPTK/share/SPTK/lpfcoef.4to3 } \\
S=52, S=54 & \$ \text { SPTK/share/lpfcoef.5to2up } \\
& \$ \text { SPTK/share/lpfcoef.5to2dn } \\
S=74 & \begin{array}{l}
\text { \$SPTK/share/SPTK/lpfcoef.7to4 } \\
\\
\\
\text { (\$SPTK is the directory where toolkit was installed.) }
\end{array}
\end{array}
$$

Filter coefficients are in ASCII format.

OPTIONS

-s $\quad S$ conversion type
$S=21$ down-sampling by $2: 1$
$S=32$ down-sampling by $3: 2$
$S=43$ down-sampling by $4: 3$
$S=52$ down-sampling by $5: 2$
$S=54$ down-sampling by $5: 4$
$S=74$ down-sampling by $7: 4$

EXAMPLE

The following example shows that the speech data sampled at 32 kHz is downsampled to 24 kHz .

$$
\text { ds }- \text { s } 43 \text { data. } 32 \text { > data. } 24
$$

SEE ALSO

us, uscd, us16

NAME
echo2 - echo arguments to the standard error

SYNOPSIS

echo2 [-n][argument]

DESCRIPTION

echo 2 sends its command line arguments to standard error.

OPTIONS

-n no output newline
[FALSE]

EXAMPLE

This example prints "error!" in the standard error output:

```
echo2 -n "error!"
```

NAME
excite - generate excitation

SYNOPSIS

excite $[-\mathbf{p} P][-\mathbf{i} I][-\mathbf{n}][-\mathbf{s} S][$ infile $]$

DESCRIPTION

excite generates an excitation sequence from the pitch period information in infile (or standard input), and sends the result to standard output. When the pitch period is nonzero (i.e. voiced), the excitation sequence consists of a pulse train at that pitch. When the pitch period is zero (i.e. unvoiced), the excitation sequence consists of Gaussian or Msequence noise.
Input and output data are in float format.

OPTIONS

-p $\quad P \quad$ frame period
-i $\quad I$ interpolation period
-n gauss/M-sequence for unvoiced
[100]
default is M -sequence
-s $\quad S \quad$ seed for nrand for Gaussian noise

EXAMPLE

In the example below, the excitation is generated from the data.p file and passed through a LPC synthesis filter whose coefficients are in the data.lpc file. The speech signal is outputted to the data.syn file.

```
excite < data.p | poledf data.lpc > data.syn
```

The following command can be used for generating an unvoiced sound by using Gaussian noise:
excite -n < data.p | poledf data.lpc > data.syn

SEE ALSO

poledf

NAME
extract - extract vector

SYNOPSIS

extract [-l L][-i I] indexfile [infile]

DESCRIPTION

extract extracts selected vectors from infile (or standard input), and sends the result to standard output. indexfile contains a previously-computed sequence of codebook indexes corresponding to the input vectors. Only those input vectors whose codebook index (from indexfile) matches the index given by the "-i" option are sent to the standard output.

OPTIONS

-l L order of vector
[10]
-i I codebook index

EXAMPLE

In the example below, a 10-th order vector file data.v in float format is quantized using a previously obtained codebook data.idx and are written to the output file data.ex quantized to the index 0 codeword.

```
extract -i 0 data.idx data.v > data.ex
```


SEE ALSO

iva, 미

NAME
fd - file dump

SYNOPSIS

fd $[-\mathbf{a} A][-\mathbf{n} N][-\mathbf{m} M][-e n t][+$ type $][$ \%form $][$ infile $]$

DESCRIPTION

$f d$ converts data from infile (or standard input) to a human-readable multi-column format, and sends the result to standard output.

OPTIONS

EXAMPLE

This example displays the speech data in "sample.wav" with the corresponding addresses:
fd +c sample.wav

Results:
00000052494646 9a 1500005741564566 6d 7420 |RIFF....WAVEfmt
000010100000000100010040 1f 000040 1f 0000 |....................
$0000200100080064617461761500008 a 8 a 8 f 99$ |....datav.........

In the following example, $f d$ reads data.s in short format and displays it with the corresponding addresses.

$$
\mathrm{fd}+\mathrm{s}-\mathrm{a} 0 \text { data.s }
$$

SEE ALSO

dmp

NAME
fdrw - draw a graph

SYNOPSIS

$$
\begin{array}{ll}
\text { fdrw } & {[-\mathbf{F} F][-\mathbf{R} R][-\mathbf{W} W][-\mathbf{H} H][-\mathbf{o} \text { xo yo }][-\mathbf{g} G][-\mathbf{m} M]} \\
& {[-\mathbf{l} L][-\mathbf{p} P][-\mathbf{j} J][-\mathbf{n} N][-\mathbf{t} T][-\mathbf{y} \text { ymin ymax }][-\mathbf{z} Z][-\mathbf{b}]} \\
& {[\text { infile }]}
\end{array}
$$

DESCRIPTION

fdrw converts float data from infile (or standard input) to a plot formatted according to the FP5301 protocol, and sends the result to standard output. One can control the details of the plot layout by setting the options bellow:

OPTIONS

-F	F	factor	[1]
-R	R	rotation angle	[0]
-W	W	width of figure ($\times 100 \mathrm{~mm}$)	[1]
-H	H	height of figure ($\times 100 \mathrm{~mm}$)	[1]
-0	xo yo	origin in mm	[20 25]
-g	G	draw grid (0 ~ 2) (see also fig)	[1]
-m	M	line type ($1 \sim 5$) 1: solid 2: dotted 3: dot and dash 4: broken 5: dash	[0]
-I	L	line pitch	[0]
-p	P	pen number ($1 \sim 10$)	[1]
-j	J	join number ($0 \sim 2$)	[1]
-n	N	number of samples	[0]
-t	T	rotation of coordinate axis. When $T=-1$, the reference point is on the top-left. When $T=1$ the reference point is on the bottom-right.	[0]
-y	ymin ymax	scaling factor for y axis	[-11]
-z	Z	This option is used when data is written recursively in the y axis. The distance between two graphs in the y axis is given by Z.	[0]
-b		bar graph mode	[FALSE]

The x axis scaling is automatically done so that every point in the input file is plotted in equally spaced interrals for the assigned width. When the $\mathbf{- n}$ option is omitted and the number of input samples is below 5000 , then the block size is made equal to the number of samples. When the number of samples is above 5000 , then the block size is made equal to 5000 .
When the $\mathbf{- y}$ option is omitted, the input data minimum value is set to $y m i n$ and the maximum value is set to ymax.

EXAMPLE

In the example below, the impulse response of a digital filter is drawn on the X window environment:

```
impulse | dfs -a 1 0.8 0.5 | fdrw -H 0.3 | xgr
```

The graph width is 10 cm and its height is 3 cm .
The next example draws the magnitude of the frequency response of a digital filter on the X window environment:

```
impulse | dfs -a 1 0.8 0.5 | spec | fdrw -y -60 40 | xgr
```

The y axis goes from -60 dB to 40 dB .
The running spectrum can be draw on the X window environment by:

```
fig -g 0 -W 0.4 << EOF
~~~~
~~~xscale 0 1 2 3 4 5
~~~~xname "FREQUENCY (kHz)"
EOF
spec < data |\
fdrw -W 0.4 -H 0.2 -g 0 -n 129 -y -30 30 -z 3 |\
xgr
```

The command psgr prints the output to a laser printer in the same manner as it is printed on the screen. Since the fdrw command includes a sequence of commands for a plotter machine (FP5301 protocol) in the output file, its output can be directly sent to a printer.

SEE ALSO

fig, 区gn, psgl

NAME
$\mathrm{fft}-\mathrm{FFT}$ for complex sequence

SYNOPSIS

$$
\mathbf{f f t}[-\mathbf{l} L][-\mathbf{m} M][-\{\mathbf{A}|\mathbf{R}| \mathbf{I} \mid \mathbf{P}\}][\text { infile }]
$$

DESCRIPTION

fft uses the Fast Fourier Transform (FFT) algorithm to calculate the Discrete Fourier Transform (DFT) of complex-valued input data from infile (or standard input), and sends the result to standard output. The input and output data is in float format, and arranged as follows.

OPTIONS

-l $\quad L \quad$ FFT size power of 2
-m $\quad M \quad$ order of sequence
[L-1]
-A output amplitude
[FALSE]
-R output only real part
[FALSE]
-I output only imaginary part
[FALSE]
-P output power spectrum

EXAMPLE

This example reads a sequence of complex numbers in float format from data.f file (real part with 256 points and imaginary part with 256 points), evaluates its DFT and outputs it to the data.dft file:

$$
\text { fft data.f -l } 256 \text {-A > data.dft }
$$

SEE ALSO

fitir, spec, phase

NAME
fft2 - 2-dimensional FFT for complex sequence

SYNOPSIS

fft2 $[-\mathbf{l} L]\left[-\mathbf{m} M_{1} M_{2}\right][-\mathbf{t}][-\mathbf{c}][-\mathbf{q}][-\{\mathbf{A}|\mathbf{R}| \mathbf{I} \mid \mathbf{P}\}]$

[infile]

DESCRIPTION

fft2 uses the 2-dimensional Fast Fourier Transform (FFT) algorithm to calculate the 2dimensional Discrete Fourier Transform (DFT) of complex-valued input data from infile (or standard input), and sends the result to standard output. The input and output data is in float format, arranged as follows.

OPTIONS

-l $\quad L \quad$ FFT size power of 2
-m $\quad M_{1} M_{2} \quad$ order of sequence $\left(M_{1} \times M_{2}\right)$. If file size k is smaller than
[64]
$\left[64, M_{1}\right]$
$64^{2} \times 2$ and $\sqrt{k \div 2}$ is an integer value, $M_{1}=M_{2}=\sqrt{k \div 2}$.
Otherwise, an output error message is sent to standard error output and the command is terminated.
-t Output results in transposed form.

FFT result
 output
[FALSE]

When results are transposed, 1 boundary data is copied from the opposite side, and then $(L+1) \times(L+1)$ data is outputted. is

Output first 1/4 data of FFT results only. As in the above c
[FALSE] option, boundary data is compensated and $\left(\frac{L}{2}+1\right) \times\left(\frac{L}{2}+1\right)$ data is outputted.

FFT result

First quadrant output

$\mathbf{- R}$	output only real part	[FALSE]
$\mathbf{- \mathbf { I }}$	output only imaginary part	[FALSE]
$\mathbf{- P}$	output power spectrum	[FALSE]

EXAMPLE

This example reads a sequence of 2-dimensional complex numbers in float format from data.f file, evaluates its 2-dimensional DFT and outputs it to data.dft file:
fft2 -A data.f > data.dft

SEE ALSO

ffit, fftr2, iffti

NAME
fftcep - FFT cepstral analysis

SYNOPSIS

fftcep $[-\mathbf{m} M][-\mathbf{l} L][-\mathbf{j} J][-\mathbf{k} K][-\mathbf{e} E][$ infile $]$

DESCRIPTION

fftcep uses FFT cepstral analysis to calculate the cepstrum from windowed framed input data in infile (or standard input), sending the result to standard output. The windowed input time domain sequence of length L is of the form:

$$
x(0), x(1), \ldots, x(L-1)
$$

Input and output data are in float format.
Also, the improved cepstral analysis method [1] may be used if the number of iterations J and the acceleration factor K are given.

OPTIONS

$\mathbf{- m}$	M	order of cepstrum	$[25]$
$\mathbf{-}$	L	frame length	$[256]$
$\mathbf{- j}$	J	number of iteration	$[0]$
$\mathbf{- k}$	K	acceleration factor	$[0.0]$
$\mathbf{-}$	E	epsilon	$[0.0]$

EXAMPLE

In the example below, speech data in float format is read from data.f. The frame length and frame period are of 400 and 80 , respectively. FFT with 512 points is then performed and the resultant cepstral coefficients are output to data.cep:

```
frame -p 80 -1 400 < data.f | window -l 400 -L 512 | \
fftcep -l 512 > data.cep
```


NOTICE

When -j and -k options are specified, improved cepstral analysis is performed.

SEE ALSO

mels

NAME
fftr - FFT for real sequence

SYNOPSIS

fftr $[-\mathbf{l} L][-\mathbf{m} M][-\{\mathbf{A}|\mathbf{R}| \mathbf{I} \mid \mathbf{P}\}][-\mathbf{H}][$ infile $]$

DESCRIPTION

fftr uses the Fast Fourier Transform (FFT) algorithm to calculate the Discrete Fourier Transform (DFT) of real-valued input data in infile (or standard input), and sends the result to standard output. To specify the FFT size, -1 option can be used. Also, -m option can be used to pad the input data with zeros. When $M+1 \leq L$, the input data is padded with $L-M-1$ zeros. When $M+1>L$, fftr terminates with error messages. The input and output data is in float format, arranged as below.

OPTIONS

-l $\quad L \quad$ FFT size power of 2
-m $\quad M \quad$ order of sequence
-A output magnitude
[FALSE]
-R output only real part
[FALSE]
-I output only imaginary part
[FALSE]
-P output power spectrum
[FALSE]
-H output half size

EXAMPLE

In the example below, a sine wave is passed through a Blackman window, its DFT is evaluated and the magnitude is plotted:

```
sin -p 30 | window | fftr -A | fdrw | xgr
```


SEE ALSO

ffit, ffft2, fftr2, lifflifftr liff2 spec, phase

NAME
fftr2 - 2-dimensional FFT for real sequence

SYNOPSIS

fftr2 [$\mathbf{- l} L]\left[-\mathbf{m} M_{1} M_{2}\right][-\mathbf{t}][-\mathbf{c}][-\mathbf{q}][-\{\mathbf{A}|\mathbf{R}| \mathbf{I} \mid \mathbf{P}\}][$ infile $]$

DESCRIPTION

fftr2 uses the 2-dimensional Fast Fourier Transform (FFT) algorithm to calculate the 2-dimensional Discrete Fourier Transform (DFT) of real-valued input data in infile (or standard input), and sends the result to standard output. The input and output data is in float format, arranged as follows.

After FFT
(Output)

OPTIONS

-l $\quad L \quad$ FFT size power of 2
-m $\quad M_{1} M_{2} \quad$ order of sequence $\left(M_{1} \times M_{2}\right)$. If the file size k is smaller than 64^{2} and \sqrt{k} is an integer value, then $M_{1}=M_{2}=\sqrt{k}$. Otherwise, output error message is sent to standard error output and then the command terminates.
-t Output results in transposed form (see also fft2l).
-c When results are transposed, 1 boundary data is copied from the opposite side, and then data whose size is ($L+$ $1) \times(L+1)$ is output. (see also تft2) .

-q	Output first $1 / 4$ data of FFT results only. As in -c option, boundary data is compensated and data whose size is $\left(\frac{L}{2}+\right.$	[FALSE]
- $\mathbf{1}) \times\left(\frac{L}{2}+1\right)$ is output (see also ffft2).	output amplitude	[FALSE]
-R	output only real part	[FALSE]
$\mathbf{- I}$	output only imaginary part	[FALSE]
$\mathbf{- P}$	output power spectrum	[FALSE]

EXAMPLE

This example reads a sequence of 2-dimensional real numbers in float format from data.f file, evaluates its 2-dimensional DFT and outputs results to data.dft file:
fftr2 -A data.f > data.dft

SEE ALSO

NAME
fig - plot a graph

SYNOPSIS

fig $\quad[-\mathbf{F} F][-\mathbf{R} R][-\mathbf{W} W][-\mathbf{H} H][-\mathbf{o}$ xo yo $][-\mathbf{g} G][-\mathbf{p} P][-\mathbf{j} J]$

$$
[-\mathbf{s} S][-\mathbf{f} \text { file }][-\mathbf{t}][\text { infile }]
$$

DESCRIPTION

fig draws a graph using information from infile (or standard input), sending the result in FP5301 plot format to standard output. This command is similar to the Unix command "graph" but includes some labeling functions. The output can be printed directly on a printer that supports the FP5301 protocol, displayed on an X11 display with the xgl command, or converted to PostScript format with the psgr command.

OPTIONS

EXAMPLE

In the example below, data in data.fig file is plotted in an X terminal:
fig data.fig |xgr
In this example, data in data.fig file is converted to postscript format and visualized with ghostview:
fig data.fig | psgr | ghostview -

COMMAND

The input data file can contain commands and data. Commands can be used for labeling, scaling, etc. Data is written in the ($x y$) coordinate pair form. Command values can be COMMAND DiNE LINES entering new command values.
$\mathrm{x}[\mathrm{mel} \alpha]$ xmin xmax $[x a]$ $\mathrm{y}[\mathrm{mel} \alpha]$ ymin ymax $[\mathrm{ya}]$
xscale $x_{1} x_{2} x_{3} \ldots$
yscale $y_{1} y_{2} y_{3} \ldots$
xname "text"
yname "text"
print x y "text" $[t h]$
printc x y "text" [th]

Assigns x and y scalings. Marks can be specified in x and y axes through $x a$ and $y a$. If no setting of $x a$ and $y a$ is done, then $x a$ is set to $x m i n$ and $y a$ to $y m i n$. If the optional "mel α ", where α must be a number (for example, mel 0.35), is used, then labeling is undertaken as a frequency transformation of a minimum phase first order all-pass filter.

Assigns values to the points $x_{1}, x_{2}, x_{3}, \ldots$ and $y_{1}, y_{2}, y_{3}, \ldots$ in x and y axes. These points can be assigned with numbers or marks, Also, when one wants to specify points which consist of numeric and nonnumeric characters all together (like in ' $2,{ }^{*} .3 .14$), then the following function should be used: s draws marks with half size. $\$ only writes number.
@ does not write anything but assigns positions of marks. none of the above only marks are written.
Whenever the character is inside quotes, it appears in the position assigned by the string that precedes it. Please refer to the commands $x / y n a m e$ for information on special characters.
(Example)
x 05
xscale 01.0 s1.5 ’2 \2.5 '3.14 "\pi" @4 "x" 5

Labels x and y axes. text should appear between the quotes. Within text, T_{E} Xcommands can be used. Also, characters, such as those that can be obtained with $\mathrm{T}_{\mathrm{E}} \mathrm{X}$, can be written with this command.

This command writes text in the position ($\mathrm{x} y$) assigned. The option $t h$ sets the rotation degree.

print

printc
title x y "text" [th]
titlec x y "text" $[t h]$
csize $\mathrm{h}[\mathrm{w}$]
pen penno
join joinno
line ltype [lpt]
xgrid $x_{1} x_{2} \ldots$
$\operatorname{ygrid} y_{1} y_{2} \ldots$
mark label [th]

This command does the same as print(c). However, the basic unit is expressed in the mm , evaluated as absolute value. The reference point is on the bottomleft side.

This command sets the character width and height (in mm), to be used in the following commands:
$\mathrm{x} / \mathrm{yscale}, \mathrm{x} / \mathrm{yn}$ ame, print/c, title/c
When the value of w is omitted, w is made equal to
h. The default values for the option $-\mathbf{s}$ are as follows:

$-\mathbf{s}$	w	h
1	2.5	2.2
2	5	2.6
3	2.5	4.4
4	5	4.4

This command chooses the variable penno. $1 \leq$ penno ≤ 10 Please refer to appendix.

This command chooses the variable joinno. $0 \leq$ joinno ≤ 2 Please refer to the appendix.

This command sets the type ltype of the line which will connect data as well as the lpt pace. lpt is in mm . When ltype $=0$: no line is used to connect coordinate points. 1: solid 2: dotted 3: dot and dash 4: broken 5: dash Please refer to the appendix.

This command causes grids to be drawn in the positions $x_{1} x_{2} \ldots, y_{1} y_{2} \ldots$
(Example)

x 05
y 06
xscale 012345
yscale 0246
xgrid 1234
ygrid 24

This command draws a mark in the assigned coordinate position. The option th specifies the angle(degree) in which the string will be draw. If label is assigned with $\backslash 0$, the mark is released. A detailed explanation on writing marks and special characters to graphs is provided at the label section.
height $h[w]$ italic $t h$

The height command defines the size of the label through its height $h(\mathrm{~mm})$ and width $w(\mathrm{~mm})$. The labels may also be written in italic by using the italic command.

These commands write circles with radius $r_{1} \quad r_{2} \ldots$ and center on the coordinate (x, y). Also, the radius r_{x} is given in mm . As for the xcircle and ycircle commands, the units considered for the radius are the scales of the x axis and y axis, respectively, as shown in the figure below.

x 05
y 020
xscale 05
yscale 020
xcircle 31012
ycircle 1312
circle 1.51513
box $x_{0} y_{0} x_{1} y_{1}\left[\begin{array}{llll}x_{2} & y_{2} & \ldots\end{array}\right]$ paint type

This command draws a rectangle with paint type connecting ($x_{0} y_{0}$) and ($x_{1} y_{1}$) through a solid line. The line which connects ($x_{0} y_{0}$) and ($x_{1} y_{1}$) forms the diagonal of the rectangle. Also, if $x_{2} y_{2} \ldots$ are assigned, a polygon is draw connecting the points (x_{0} $\left.y_{0}\right),\left(x_{1} y_{1}\right),\left(x_{2} y_{2}\right), \ldots$. In this case, Please do not set the paint type to any value different from the default. The default value is 1 .

(Example)

x 010
y 010
xscale 010
yscale 010
paint 18
box 2.503 .56
paint -18
box 4058
paint 1
box 22888247
clip $x_{0} y_{0} x_{1} y_{1}$
\# any comment

This command allows for drawing only inside the box defined by $\left(x_{0} y_{0}\right),\left(x_{1} y_{1}\right)$. When the coordinates $\left(x_{0} y_{0}\right),\left(x_{1} y_{1}\right)$ are omitted, then the clip command is skipped.
(Example)


```
x 010
y 010
xscale 0 10
yscale 010
clip 2397
paint }1
box 2.503.56
paint -18
box 405 
paint }
box 22888247
x 010 y 010 xscale 010 yscale 010
clip 2397
paint 18 box 2.503 .56 paint -18 box 4058 box 22888247
```


DATA LINES

x y $[$ label $[$ th $]]$
eod
EOD

The coordinates (x y) are scaled by the values specified in the command line. If a string is written to label, then it will be written in the ($\mathrm{x} y$) position. There should be no empty characters (e.g., space) in the beginning of the label setting. When label is given in the mark command, the label replacement will take place only for this coordinate. The option th assigns the angle.
If $\backslash n$, where $0 \leq n \leq 15$, is assigned to label, the corresponding mark is draw (refer to the appendix for the types of marks). When a minus sign is written before mark number, then the connecting line between marks passes through the center of each mark.
If a minus sign is not included, then connecting lines do not pass through the center of each mark. When $n=16(\backslash 16)$, a small circle is written with diameter defined by the hight command. Also, special character and ASCII character can be written through code number when $n>32$.

This is the end of data sign. Coordinates before and after the eod sign are not connected.

APPENDIX

- The following type of marks can be defined through label:

0	1	2	3	4	5	6	7
	-	\times	\square	\triangle	\bigcirc	\checkmark	\times
8	9	10	11	12	13	14	15
+	\otimes	\oplus	-	-	-	-	*

- The following types of pen and line can be defined:
[When output is obtained through the command psgr]
pen

2
line-type 3

4 \qquad

5

ps: The types of output generated by the pen command depend on the printer (Please try printing this page).
[When output is obtained through the command 区gr] The following colors can be used.

pen type	1	2	3	4	5	6	7	8	9	10
color	black	blue	red	green	pink	orange	emerald	gray	brown	dark blue

- The following types of joins can be defined:

join type	0 Miter join	1 Round join	2 Bevel join
example			

- paint type:

ps: From $1 \sim 3$ only a frame is draw, and for -9 and -19 the center is white and no frame is draw.

NAME
frame - extract frame from data sequence

SYNOPSIS

frame $[-\mathbf{l} L][-\mathbf{n}][-\mathbf{p} P][$ infile $]$

DESCRIPTION

frame converts a sequence of input data from infile (or standard input) to a series of possibly-overlapping frames with period P and length L, and sends the result to standard output. If the input data is $x(0), x(1), \ldots, x(T)$, then the output data will be given by :

$$
\begin{array}{ccccccccccc}
0 & , & 0 & , & \ldots & , & x(0) & , & \ldots & , & x(L / 2) \\
x(P-L / 2) & , & x(P-L / 2+1) & , & \ldots & , & x(P) & , & \ldots & , & x(P+L / 2) \\
x(2 P-L / 2) & , & x(2 P-L / 2+1) & , & \ldots & , & x(2 P) & , & \ldots & , & x(2 P+L / 2)
\end{array}
$$

OPTIONS

$$
\text { -l } \quad L \quad \text { frame length }
$$

-p $\quad P \quad$ frame period
-n This option is used when, instead of having $\mathrm{x}(0)$ as the center
point in the first frame, one want to make $x(0)$ as the first point point in the first frame, one want to make $\mathrm{x}(0)$ as the first point of the first frame

EXAMPLE

In the example below, data is read from data.f file. The frame length and frame period are of 400 and 80 , respectively, and Blackman window is used. Moreover, linear prediction analysis is applied. The output is written in data.lpc file:

```
frame -l 400 -p 80 < data.f | window -l 400 | \
lpc > data.lpc
```


SEE ALSO

bcp, 区2x, bcut, window

NAME
freqt - frequency transformation

SYNOPSIS

freqt $\left[-\mathbf{m} M_{1}\right]\left[-\mathbf{M} M_{2}\right]\left[-\mathbf{a} A_{1}\right]\left[-\mathbf{A} A_{2}\right][$ infile $]$

DESCRIPTION

freqt converts a M_{1}-th order minimum phase sequence from infile (or standard input) into a frequency-transformed M_{2}-th order sequence, sending the result to standard output.

Given the input sequence

$$
c_{\alpha_{1}}(0), c_{\alpha_{1}}(1), \ldots, c_{\alpha_{1}}\left(M_{1}\right)
$$

the frequency transform is given by:

$$
\begin{gather*}
\alpha=\left(\alpha_{1}-\alpha_{2}\right) /\left(1-\alpha_{1} \alpha_{2}\right) \\
c_{\alpha_{2}}^{(i)}(m)= \begin{cases}c_{\alpha_{1}}(-i)+\alpha c_{\alpha_{2}}^{(i-1)}(0) & m=0 \\
\left(1-\alpha^{2}\right) c_{\alpha_{2}}^{(i-1)}(0)+\alpha c_{\alpha_{2}}^{(i-1)}(1) & m=1 \\
c_{\alpha_{2}}^{(i-1)}(m-1)+\alpha\left(c_{\alpha_{2}}^{(i-1)}(m)-c_{\alpha_{2}}^{(i)}(m-1)\right) & m=2, \ldots, M_{2} \\
i=-M_{1}, \ldots,-1,0\end{cases}
\end{gather*}
$$

And the M_{2}-th order frequency transformed output sequence is of the form:

$$
c_{\alpha_{2}}^{(0)}(0), c_{\alpha_{2}}^{(0)}(1), \ldots, c_{\alpha_{2}}^{(0)}\left(M_{2}\right)
$$

Input and output data are in float format.

OPTIONS

-m $\quad M_{1} \quad$ order of minimum phase sequence
-M $\quad M_{2} \quad$ order of warped sequence
-a $\quad A_{1} \quad$ all-pass constant of input sequence α_{1}
-A $\quad A_{2}$ all-pass constant of output sequence α_{2}

EXAMPLE

In the following example, the linear prediction coefficients in float format are read from data.lpc file, transformed in 30-th order LPC mel-cepstral coefficients, and written in data.lpcmc file:

$$
\text { lpc2c < data.lpc | freqt }-\mathrm{m} 30>\text { data.lpcmc }
$$

SEE ALSO

NAME
gc2gc - generalized cepstral transformation

SYNOPSIS

$$
\begin{aligned}
\mathbf{g c} 2 \mathrm{gc} & {\left[-\mathbf{m} M_{1}\right]\left[-\mathbf{g} G_{1}\right]\left[-\mathbf{c} C_{1}\right][-\mathbf{n}][-\mathbf{u}] } \\
& {\left[-\mathbf{M} M_{2}\right]\left[-\mathbf{G} G_{2}\right]\left[-\mathbf{C} C_{2}\right][-\mathbf{N}][-\mathbf{U}][\text { infile }] }
\end{aligned}
$$

DESCRIPTION

$g c 2 g c$ uses a regressive equation to transform a sequence of generalized cepstral coefficients with power parameter γ_{1} from infile (or standard input) into generalized cepstral coefficients with power parameter γ_{2}, sending the result to standard output.
Input and output data are in float format.
The regressive equation for the generalized cepstral coefficients is as follows.

$$
c_{\gamma_{2}}(m)=c_{\gamma_{1}}(m)+\sum_{k=1}^{m-1} \frac{k}{m}\left(\gamma_{2} c_{\gamma_{1}}(k) c_{\gamma_{2}}(m-k)-\gamma_{1} c_{\gamma_{2}}(k) c_{\gamma_{1}}(m-k)\right), \quad m>0 .
$$

For the above equation, in case $\gamma_{1}=-1, \gamma_{2}=0$, then LPC cepstral coefficients are obtained from the LPC coefficients, in case $\gamma_{1}=0, \gamma_{2}=1$, a minimum phase impulse response is obtained from the cepstral coefficients.

If the coefficients $c_{\gamma}(m)$ have not been normalized, then the input and output will be represented by

$$
1+\gamma c_{\gamma}(0), \gamma c_{\gamma}(1), \ldots, \gamma c_{\gamma}(M)
$$

The following applies to the case the coefficients are normalized,

$$
K_{\alpha}, \gamma c_{\gamma}^{\prime}(1), \ldots, \gamma c_{\gamma}^{\prime}(M)
$$

OPTIONS

-m	M_{1}	order of generalized cepstrum (input)	[25]
-g	G_{1}	gamma of generalized cepstrum (input)	[0]
-c	C_{1}	$\gamma_{1}=G_{1}$ gamma of generalized cepstrum (input)	
-n		$\begin{aligned} & \gamma_{1}=-1 /(\text { int }) C_{1} \\ & C_{1} \text { must be } C_{1} \geq 1 \\ & \text { regard input as normalized cepstrum } \end{aligned}$	[FALSE]
-u		regard input as multiplied by γ_{1}	[FALSE]
-M	M_{2}	order of generalized cepstrum (output)	[25]
-G	G_{2}	gamma of generalized cepstrum (output)	[1]
-C	C_{2}	$\gamma_{2}=G_{2}$ gamma of mel-generalized cepstrum (output) $\gamma_{2}=-1 /(\mathrm{int}) G_{2}$ C_{2} must be $C_{2} \geq 1$	

$\begin{array}{ll}-\mathbf{N} & \text { regard output as normalized cepstrum }\end{array}$
[FALSE]
-U
regard output as multiplied by γ_{1}

EXAMPLE

In the following example, generalized cepstral coefficients with $M=10$ and $\gamma_{1}=-0.5$ are read in float format from data.gcep file, transformed into 30-th order cepstral coefficients, and written to data.cep:

$$
\text { gc2gc -m } 10 \text {-c } 2 \text {-M } 30 \text {-G } 0 \text { < data.gcep > data.cep }
$$

NOTICE

Value of C_{1} and C_{2} must be $C_{1} \geq 1, C_{2} \geq 1$.

SEE ALSO

[gcep, mgcep, freqt, mgc2mgc, [pc2d

NAME
gcep - generalized cepstral analysis $[6, \square, 8]$

SYNOPSIS

gcep $\quad[-\mathbf{m} M][-\mathbf{g} G][-\mathbf{c} C][-\mathbf{l} L][-\mathbf{q} Q][-\mathbf{n}][-\mathbf{i} I][-\mathbf{j} J][-\mathbf{d} D]$

$$
[-\mathbf{e} e][-\mathbf{E} E][-\mathbf{f} F][\text { infile }]
$$

DESCRIPTION

gcep uses generalized cepstral analysis to calculate normalized cepstral coefficients $c_{\gamma}^{\prime}(m)$ from L-length framed windowed input data from infile (or standard input), sending the result to standard output. The windowed input sequence of length L is of the form:

$$
x(0), x(1), \ldots, x(L-1)
$$

Input and output data are in float format.
In the generalized cepstral analysis, the speech spectrum is estimated by the M-th order generalized cepstrum $c_{\gamma}(m)$ or by normalized generalized cepstrum $c_{\gamma}^{\prime}(m)$ using the log spectrum through the unbiased estimation method showed below.

$$
\begin{aligned}
H(z) & =s_{\gamma}^{-1}\left(\sum_{m=0}^{M} c_{\gamma}(m) z^{-m}\right) \\
& =K \cdot s_{\gamma}^{-1}\left(\sum_{m=1}^{M} c_{\gamma}^{\prime}(m) z^{-m}\right) \\
& = \begin{cases}K \cdot\left(1+\gamma \sum_{m=1}^{M} c_{\gamma}^{\prime}(m) z^{-m}\right)^{1 / \gamma}, & -1 \leq \gamma<0 \\
K \cdot \exp \sum_{m=1}^{M} c_{\gamma}^{\prime}(m) z^{-m}, & \gamma=0\end{cases}
\end{aligned}
$$

In order to find the minimum value of the cost function, the linear prediction method is used for $\gamma=-1$. Otherwise, the Newton-Raphson method is applied.

OPTIONS

$$
\begin{array}{llll}
\mathbf{- m} & M & \text { order of generalized cepstrum } & \text { [25] } \tag{25}\\
\mathbf{- g} & G & \text { gamma of generalized cepstrum } & {[0]} \\
& & \gamma=G \\
\mathbf{- c} & C & \text { gamma of generalized cepstrum } & \\
& & \gamma=-1 /(\text { int }) C \\
& & C \text { must be } C \geq 1 \\
\mathbf{- l} & L & \text { frame length } \\
\text {-n } & & \text { output normalized cepstrum } & \text { [256] } \\
\text { [FALSE] }
\end{array}
$$

$-\mathbf{q} \quad Q \quad$ input data style
[0]

$$
\begin{array}{ll}
Q=0 & \text { windowed data sequence } \\
Q=1 & 20 \times \log |f(w)| \\
Q=2 & \ln |f(w)| \\
Q=3 & |f(w)| \\
Q=4 & |f(w)|^{2}
\end{array}
$$

Usually, the options below do not need to be assigned.
-i I minimum iteration
$\begin{array}{lll}\text { - } & J & \text { maximum iteration } \\ \text {-d } & D & \text { Newton-Raphson method end condition. The default value is }\end{array}$ in a rate smaller than 0.1%.
-e $\quad e \quad$ small value added to periodogram
-E $\quad E \quad$ floor in db calculated per frame
-f $\quad F$ mimimum value of the determinant of the normal matrix

EXAMPLE

In the following example, speech data is read in float format from data.f file, and a 15 -th order generalized cepstral analysis is applied. The results are written to data.gcep:

$$
\text { frame < data.f | window | gcep -m } 15 \text { > data.gcep }
$$

The following example shows that speech data read in float format from data.f is analyzed with a 24 -th order generalized cepstral analysis. During the analysis, The frame length is 400 points, the frame period is 80 points and -30 dB floor value per frame is set.

```
frame -1 400 -p 80 < data.f | window -1 400 | \
gcep -L -m 24 -E -30 > data.gcep
```


NOTICE

- Value of c must be $C \geq 1$
- Value of e must be $e \geq 0$
- Value of E must be $E<0$

SEE ALSO

uels, mcep, mgcep, glsadf

NAME
glogsp - draw a log spectrum graph

SYNOPSIS

glogsp $\quad[-\mathbf{F} F][-\mathbf{O} O][-\mathbf{x} X][-\mathbf{y}$ ymin ymax $][-\mathbf{y s} Y S][-\mathbf{p} P][-\ln L N]$ [-s S][-lL][-c comment][infile]

DESCRIPTION

glogsp converts float-format log spectral data from infile (or standard input) to FP5301 plot format, sending the result to standard output. The output can be visualized with 区gr. glogsp is implemented as a shell script that uses the fig and fdrw commands.

OPTIONS

-F	F	factor
-O	O	origin of graph
		1 (40,205) [mm]
		$2(125,205) \quad[\mathrm{mm}]$
		3 (40,120) [mm]
		4 (125,120) [mm]
		$5 \quad(40,35) \quad[\mathrm{mm}]$
		$6 \quad(125,35) \quad[\mathrm{mm}]$
		12
		$3 \quad 4$
		5 6
-x	X	x scale
		1 normalized frequency ($0 \sim 0.5$)
		2 normalized frequency ($0 \sim \pi$)
		4 frequency ($0 \sim 4 \mathrm{kHz}$)
		5 frequency ($0 \sim 5 \mathrm{kHz}$)
		8 frequency ($0 \sim 8 \mathrm{kHz}$)
		10 frequency ($0 \sim 10 \mathrm{kHz}$)
		16 frequency ($0 \sim 16 \mathrm{kHz}$)
		22 frequency ($0 \sim 22 \mathrm{kHz}$)
		24 frequency ($0 \sim 24 \mathrm{kHz}$)
		48 frequency ($0 \sim 48 \mathrm{kHz}$)
-y	ymin ymax	y scale[dB]
-ys	$Y S$	Y -axis scaling factor

$\mathbf{- p}$	P	pen number $(1 \sim 10)$	$[1]$
$\mathbf{- l n}$	$L N$	kind of line style $(0 \sim 5)$ (see also IIg)	$[1]$
$-\mathbf{s}$	S	start frame number	$[0]$
$\mathbf{- l}$	L	frame length	$[256]$
$\mathbf{- c}$	comment	comment for the graph	[N/A]

Usually, the options below do not need to be assigned.

$\mathbf{- W}$	W
$\mathbf{- H}$	H
$\mathbf{- v}$	
$\mathbf{- 0}$	xo yo
$\mathbf{- \mathbf { g }}$	G
$\mathbf{- f}$	file
-help	

width of the graph (mm)
height of the graph (mm)
over write mode
[FALSE]
origin of the graph. if -o option exists, -O is not [40 205]
effective
type of frame of the graph $(0 \sim 2)$ (see also fig)
additional data file for fig
[NULL]

EXAMPLE

In the example below, speech data sampled at 10 kHz is read in short format from data.s file, the magnitude of its log spectrum is evaluated and plotted on the screen:

```
x2x +sf data.s | bcut +f -s 4000 -e 4255 | window -n 2| spec |\
glogsp -x 5 | xgr
```


SEE ALSO

fig, fdrw, xgr, psgn, grlogsp, gwave

NAME

glsadf - GLSA digital filter for speech synthesis[18]]

SYNOPSIS

glsadf $[-\mathbf{m} M][-\mathbf{c} C][-\mathbf{p} P][-\mathbf{i} I][-\mathbf{v}][-\mathbf{t}][-\mathbf{n}][-\mathbf{k}][-\mathbf{P} P a]$ gcfile [infile]

DESCRIPTION

glsadf derives a Generalized Log Spectral Approximation digital filter from normalized generalized cepstral coefficients in gcfile and uses it to filter an excitation sequence from infile (or standard input) to synthesize speech data, sending the result to standard output. The cepstral coefficients can be be represented as $K, c_{\gamma}^{\prime}(1), \ldots, c_{\gamma}^{\prime}(M)$.
Input and output data are in float format.
The transfer function $H(z)$ are synthesis filter based on an M order normalized generalized cepstral coefficients $c_{\gamma}^{\prime}(m)$ is

$$
\begin{aligned}
H(z) & =K \cdot D(z) \\
& = \begin{cases}K \cdot\left(1+\gamma \sum_{m=1}^{M} c_{\gamma}^{\prime}(m) z^{-m}\right)^{1 / \gamma}, & 0<\gamma \leq-1 \\
K \cdot \exp \sum_{m=1}^{M} c_{\gamma}^{\prime}(m) z^{-m}, & \gamma=0\end{cases}
\end{aligned}
$$

In this case, we are considering only values for the power parameter $\gamma=-1 / C$, where C is a natural number. The filter $D(z)$ can be realized through a C level cascade as shown in figurell, where

$$
\frac{1}{C(z)}=\frac{1}{1+\gamma \sum_{m=1}^{M} c_{\gamma}^{\prime}(m) z^{-m}}
$$

Figure 1: Structure of filter $D(z)$

OPTIONS

$\mathbf{- m}$	M	order of generalized cepstrum	[25]
$\mathbf{- c}$	C	power parameter $\gamma=-1 / C$ for generalized cepstrum	$[1]$
		if $C==0$ then the LMA filter is used	
$\mathbf{- p}$	P	frame period	$[100]$
$\mathbf{- i}$	I	interpolation period	[1]
$\mathbf{- n}$		regard input as normalized generalized cepstrum	[FALSE]
$\mathbf{- \mathbf { v }}$	inverse filter	[FALSE]	
$\mathbf{- \mathbf { t }}$	transpose filter	[FALSE]	
$\mathbf{- k}$	filtering without gain	[FALSE]	

The option below only works if $C==0$.
-P $\quad \mathrm{Pa}$ order of the Padé approximation
$P a$ should be 4 or 5

EXAMPLE

In this example, excitation is generated through the pitch data in the file data.pitch in float format, passed through a GLSA filter based on the generalized cepstral coefficients file data.gcep, and the synthesized speech is output to data.syn:
excite < data.pitch | glsadf data.gcep > data.syn

NOTICE

If $C==0$, LMA filter is used, $P a$ should be 4 or 5

SEE ALSO

Itcdt, Imadt, $\|$ spdt, mlsadt, mglsadt

NAME

gmm - GMM parameter estimation[28]

SYNOPSIS

gmm $\quad[-\mathbf{l} L][-\mathbf{m} M][-\mathbf{t} T][-\mathbf{s} S][-\mathbf{a} A][-\mathbf{b} B][-\mathbf{e} E][-\mathbf{v} V][-\mathbf{w} W][-\mathbf{f}]$
[$\left.\mathbf{- M} W_{M A P}\right][-\mathbf{F}$ gmmfile $][-\mathbf{B} B 1, B 2, \ldots][-\mathbf{c 1}][-\mathbf{c 2}][$ infile $]$

DESCRIPTION

$g m m$ uses the expectation maximization (EM) algorithm to estimate Gaussian mixture model (GMM) parameters with diagonal covariance matrices, from a sequence of vectors in the infile (or standard input), sending the result to standard output.
The input sequence \boldsymbol{X} consists of T float vectors \boldsymbol{x}, each of size L :

$$
\begin{aligned}
& \boldsymbol{X}=[\boldsymbol{x}(0), \boldsymbol{x}(1), \ldots, \boldsymbol{x}(T-1)], \\
& \boldsymbol{x}(t)=\left[x_{t}(0), x_{t}(1), \ldots, x_{t}(L-1)\right] .
\end{aligned}
$$

The result is GMM parameters λ consisting of M mixture weights \boldsymbol{w} and M Gaussians with mean vector $\boldsymbol{\mu}$ and variance vector \boldsymbol{v}, each of length L :

$$
\begin{aligned}
& \lambda=[\boldsymbol{w}, \boldsymbol{\mu}(0), \boldsymbol{v}(0), \boldsymbol{\mu}(1), \boldsymbol{v}(1), \ldots, \boldsymbol{\mu}(M-1), \boldsymbol{v}(M-1)], \\
& \boldsymbol{w}=[w(0), w(1), \ldots, w(M-1)], \\
& \boldsymbol{\mu}(m)=\left[\mu_{m}(0), \mu_{m}(1), \ldots, \mu_{m}(L-1)\right], \\
& \boldsymbol{v}(m)=\left[\sigma_{m}^{2}(0), \sigma_{m}^{2}(1), \ldots, \sigma_{m}^{2}(L-1)\right],
\end{aligned}
$$

where

$$
\sum_{m=0}^{M-1} w(m)=1
$$

The GMM parameter set λ is initialized by an LBG algorithm and the following EM steps are used iteratively to obtain the new parameter set $\hat{\lambda}$:

$$
\begin{aligned}
\hat{w}(m) & =\frac{1}{T} \sum_{t=0}^{T-1} p(m \mid \boldsymbol{x}(t), \lambda) \\
\hat{\boldsymbol{\mu}}(m) & =\frac{\sum_{t=0}^{T-1} p(m \mid \boldsymbol{x}(t), \lambda) \boldsymbol{x}(t)}{\sum_{t=0}^{T-1} p(m \mid \boldsymbol{x}(t), \lambda)} \\
\hat{\sigma}_{m}^{2}(l) & =\frac{\sum_{t=0}^{T-1} p(m \mid \boldsymbol{x}(t), \lambda) x_{t}^{2}(l)}{\sum_{t=0}^{T-1} p(m \mid \boldsymbol{x}(t), \lambda)}-\hat{\mu}_{m}^{2}(l),
\end{aligned}
$$

where $p(m \mid \boldsymbol{x}(t), \lambda)$ is the posterior probability of being in the m-th component at time t and is given by:

$$
p(m \mid \boldsymbol{x}(t), \lambda)=\frac{w(m) \mathcal{N}(\boldsymbol{x}(t) \mid \boldsymbol{\mu}(m), \boldsymbol{v}(m))}{\sum_{k=0}^{M-1} w(k) \mathcal{N}(\boldsymbol{x}(t) \mid \boldsymbol{\mu}(k), \boldsymbol{v}(k))}
$$

where

$$
\begin{aligned}
\mathcal{N}(\boldsymbol{x}(t) \mid \boldsymbol{\mu}(m), \boldsymbol{v}(m)) & =\frac{1}{(2 \pi)^{L / 2}|\Sigma(m)|^{1 / 2}} \exp \left\{-\frac{1}{2}(\boldsymbol{x}(t)-\boldsymbol{\mu}(m))^{\prime} \Sigma(m)^{-1}(\boldsymbol{x}(t)-\boldsymbol{\mu}(m))\right\} \\
& =\frac{1}{(2 \pi)^{L / 2} \prod_{l=0}^{L-1} \sigma_{m}(l)} \exp \left\{-\frac{1}{2} \sum_{l=0}^{L-1} \frac{\left(x_{t}(l)-\mu_{m}(l)\right)^{2}}{\sigma_{m}^{2}(l)}\right\},
\end{aligned}
$$

and $\Sigma(m)$ is a diagonal matrix with diagonal elements $\boldsymbol{v}(m)$:

$$
\Sigma(m)=\left[\begin{array}{cccc}
\sigma_{m}^{2}(0) & & & 0 \\
& \sigma_{m}^{2}(1) & & \\
0 & & \ddots & \\
0 & & & \sigma_{m}^{2}(L-1)
\end{array}\right]
$$

Also, the Average log-likelihood for training data X

$$
\log p(\boldsymbol{X} \mid \lambda)=\frac{1}{T} \sum_{t=0}^{T-1} \log \sum_{m=0}^{M-1} w(m) \mathcal{N}(\boldsymbol{x}(t) \mid \boldsymbol{\mu}(m), \boldsymbol{v}(m))
$$

is increased by iterating the above steps. The average \log-probability $\log p(X \mid \lambda)$ at each iterative step is printed on the standard error output. The EM steps are iterated at least A times and stopped at the B-th iteration or when there is a small absolute change in $\log p(X \mid \lambda)(\leq E)$.

If the -M option is specified, gmm estimates parameters using Maximum a Posteriori (MAP) method. The parameters $\lambda_{M A P}$ are defined as the mode of the posterior probability density function of λ denoted as $p(\lambda \mid \boldsymbol{X})$, i.e.

$$
\begin{aligned}
\lambda_{M A P} & =\underset{\lambda}{\operatorname{argmax}} p(\lambda \mid \boldsymbol{X}) \\
& =\underset{\lambda}{\operatorname{argmax}} p(\boldsymbol{X} \mid \lambda) p(\lambda) .
\end{aligned}
$$

The joint prior density $p(\lambda)$ is the product of Dirichlet and normal-Wishart densities as follows:

$$
p(\lambda)=g(w(0), \cdots, w(M-1)) \prod_{m=0}^{M-1} g(\boldsymbol{\mu}(m), \boldsymbol{v}(m))
$$

where

$$
\begin{aligned}
& g(w(0), \cdots, w(M-1) \mid \beta(0), \cdots, \beta(M-1)) \propto \prod_{m=0}^{M-1} w(m)^{\beta(m)-1}, \\
& g\left(\boldsymbol{\mu}(m), \boldsymbol{v}(m) \mid \tau(m), \boldsymbol{\mu}^{\prime}(m), \alpha(m), \boldsymbol{u}(m)\right) \propto|\boldsymbol{\Sigma}(m)|^{-\frac{\alpha(m)-L}{2}} \\
& \cdot \exp \left\{-\frac{\tau(m)}{2}\left(\boldsymbol{\mu}(m)-\boldsymbol{\mu}^{\prime}(m)\right)^{\top} \boldsymbol{\Sigma}(m)^{-1}\left(\boldsymbol{\mu}(m)-\boldsymbol{\mu}^{\prime}(m)\right)\right\} \exp \left\{-\frac{1}{2} \operatorname{Tr}\left(\boldsymbol{u}(m) \boldsymbol{\Sigma}(m)^{-1}\right)\right\} .
\end{aligned}
$$

Then the updated parameters are derived from:

$$
\begin{aligned}
& \hat{w}(m)=\frac{(\beta(m)-1)+\sum_{t=0}^{T-1} c_{m t}}{\sum_{m=0}^{M-1}(\beta(m)-1)+\sum_{m=0}^{M-1} \sum_{t=0}^{T-1} c_{m t}}, \\
& \hat{\boldsymbol{\mu}}(m)=\frac{\tau(m) \boldsymbol{\mu}^{\prime}(m)+\sum_{t=0}^{T-1} c_{m t} \boldsymbol{x}(t)}{\tau(m)+\sum_{t=1}^{T-1} c_{m t}}, \\
& \hat{\mathbf{\Sigma}}(m)=\frac{\boldsymbol{u}(m)+\sum_{t=0}^{T-1} c_{m t}(\boldsymbol{x}(t)-\hat{\boldsymbol{\mu}}(m))(\boldsymbol{x}(t)-\hat{\boldsymbol{\mu}}(m))^{\top}+\tau(m)\left(\boldsymbol{\mu}^{\prime}(m)-\hat{\boldsymbol{\mu}}(m)\right)\left(\boldsymbol{\mu}^{\prime}(m)-\hat{\boldsymbol{\mu}}(m)\right)^{\top}}{(\alpha(m)-L)+\sum_{t=0}^{T-1} c_{m t}} .
\end{aligned}
$$

where

$$
\begin{aligned}
c_{m t} & =p(m \mid \boldsymbol{x}(t), \lambda), \\
\beta(m)-1 & =\tau(m)=W_{M A P} w^{\prime}(m), \\
\alpha(m) & =\tau(m)+L, \\
\boldsymbol{u}(m) & =\tau(m) \boldsymbol{\Sigma}^{\prime}(m) .
\end{aligned}
$$

The parameters

$$
\lambda^{\prime}=\left(w^{\prime}(0), \cdots, w^{\prime}(M-1), \mu^{\prime}(0), \cdots, \mu^{\prime}(M-1), v^{\prime}(0), \cdots, v^{\prime}(M-1)\right)
$$

are obtained from the pre-estimated universal background model (UBM).

OPTIONS

-l	L
-	M
-t	T
-s	S
-a	A
-b	B
-e	E
-	V
-w	W
$\mathbf{- f}$	
-M	$W_{M A P}$

```
-F fn
-F \(\quad f n\)
```

length of vector
number of Gaussian components
number of training vectors
seed of random variable for LBG algorithm
minimum number of EM iterations
maximum number of EM iterations ($\mathrm{A} \leq \mathrm{B}$)
$\begin{array}{ll}-\mathbf{s} & S \\ \mathbf{- a} & A\end{array}$
-e $E \quad$ end condition for EM iteration
-v $\quad V \quad$ flooring value for variances
flooring value for weights $(1 / \mathrm{M}) * \mathrm{~W}$
full covariance
[FALSE]
-M $W_{M A P}$
using maximum a posteriori(MAP) estimation,
where $W_{M A P}$ is the parameter for
Dirichlet and normal-Wishart densities.
GMM initial parameter file
If -M option is specified,
fn is regarded as the parameter for UBM.
(level 2)

| -B | $B 1 B 2 \ldots B n$ | block size in covariance matrix, |
| :--- | :--- | :--- | :--- |
| where $(B 1+B 2+\ldots+B n)=L$ | [N/A] | |
| -c1 | inter-block correlation | |
| -c2 | full covariance in each block | [N/A] |
| | | [N/A] |

EXAMPLE

In the following example, a GMM with 8 Gaussian components is generated from training vectors data.f in float format, and GMM parameters are written to gmm.f.

```
gmm -m 8 data.f > gmm.f
```

If one wants to model GMMs with full covariances, one can use the -f option.

$$
\text { gmm -m } 8 \text {-f data.f > gmm.f }
$$

The -F option can be used to specify GMM initial parameter file gmm.init.

```
gmm -m 8-f data.f -F gmm.init > gmm.f
```

If the -M option is specified as follows, the MAP estimates of the GMM parameters map.gmm are obtained using universal background model ubm.gmm.

$$
\text { gmm -l } 15 \text {-m } 8 \text {-M } 1.0 \text {-F ubm.gmm data.f > map.gmm }
$$

In the followings, 15 -dimentional training vectors data.f can be modeled by a GMM with 8 Gaussian components. If one wants to divide the covariance matrix into several blocks, the -B option can be used to specify size of each blocks in covariance matrix. For example, when dividing 15-dimentional vector into 3 sub-parts, where each part has 5 dimention, the structure of the covariance matrix can be represented by 3×3 subblocks:

```
gmm -l 15 -m 8 data.f -B 5 5 5 > gmm.f
```

Note that without -c1 and -c2 option, a diagonal covariance can be obtained as shown in figure $[$ (a). An example of the corresponding structure of the covariance matrix is shown in figure 『 (a).
If one wants to turn on inter-block correlation, The -c1 option can be used and corresponding command line is below.

$$
\text { gmm }-115-m 8 \text { data.f -B } 555-c 1>g m m . f
$$

The corresponding example is shown in figure (b).
If one wants to turn on block-wise full covariance, The -c2 option can be used and the corresponding command line is below.

$$
\text { gmm -1 } 15 \text {-m } 8 \text { data.f -B } 555-c 2>\text { gmm.f }
$$

The corresponding example is shown in figure [(c).
By specifying both -c1 and -c2 option, a full covariance matrix can be obtained as shown in figure \mathbb{Z} (d). This case is equivalent to the case that only -f option is specified.

Figure 2: Examples of the structure of covariance matrix

NOTICE

-The -e option specifies a threshold for the change of average log-likelihood for training data at each iteration.
-The -F option specifies a GMM initial parameter file in which weight, mean, and variance parameters must be aligned in the same order as output.
-The -B option specifies the size of each blocks in covariance matrix.

- The -c1 and -c2 option must be used with -B option. Without -c1 and -c2 option, a diagonal covariance can be obtained.

SEE ALSO

gimmp, bg

NAME
gmmp - calculation of GMM log-probability

SYNOPSIS

gmmp [-l L][-m M][-a][-f][-BB1,B2, \ldots][-c1][-c2]gmmfile[infile]

DESCRIPTION

gmmp calculates GMM log-probabilities of input vectors from infile (or standard input). The gmmfile has the same file format as the one generated by the gmm command, i.e., gmmfile consists of M mixture weights \boldsymbol{w} and M Gaussians with mean vector $\boldsymbol{\mu}$ and diagonal variance vector \boldsymbol{v}, each of length L :

$$
\begin{aligned}
& \lambda=[\boldsymbol{w}, \boldsymbol{\mu}(0), \boldsymbol{v}(0), \boldsymbol{\mu}(1), \boldsymbol{v}(1), \ldots, \boldsymbol{\mu}(M-1), \boldsymbol{v}(M-1)], \\
& \boldsymbol{w}=[w(0), w(1), \ldots, w(M-1)], \\
& \boldsymbol{\mu}(m)=\left[\mu_{m}(0), \mu_{m}(1), \ldots, \mu_{m}(L-1)\right], \\
& \boldsymbol{v}(m)=\left[\sigma_{m}^{2}(0), \sigma_{m}^{2}(1), \ldots, \sigma_{m}^{2}(L-1)\right] .
\end{aligned}
$$

The input sequence consists of T float vectors \boldsymbol{x}, each of size L :

$$
x(0), x(1), \ldots, x(T-1)
$$

The result is a sequence of log-probabilities of input vectors:

$$
\log b(\boldsymbol{x}(0)), \log b(\boldsymbol{x}(1)), \ldots, \log b(\boldsymbol{x}(T-1))
$$

or an average log-probability (if -a option is used):

$$
\log P(\boldsymbol{X})=\frac{1}{T} \sum_{t=0}^{T-1} \log b(\boldsymbol{x}(t))
$$

where

$$
\begin{aligned}
& b(\boldsymbol{x}(t))=\sum_{m=0}^{M-1} w(m) \mathcal{N}(\boldsymbol{x}(t) ; \boldsymbol{\mu}(m), \boldsymbol{v}(m)), \\
& \mathcal{N}(\boldsymbol{x}(t) ; \boldsymbol{\mu}(m), \boldsymbol{v}(m))=\frac{1}{(2 \pi)^{L / 2} \prod_{l=0}^{L-1} \sigma_{m}(l)} \exp \left\{-\frac{1}{2} \sum_{l=0}^{L-1} \frac{\left(x_{t}(l)-\mu_{m}(l)\right)^{2}}{\sigma_{m}^{2}(l)}\right\} .
\end{aligned}
$$

OPTIONS

$\mathbf{- l}$	L
$\mathbf{- m}$	M
$\mathbf{- f}$	

length of vector
number of Gaussian components
full covariance
(level 2)

-B	$B 1 B 2 \ldots B n$	block size in covariance matrix,				
where $(B 1+B 2+\ldots+B n)=L$			$\quad\left[\begin{array}{ll} & \text { inter-block correlation }\end{array}\right]$	-c1		full covariance in each block
:---	:---	:---				

EXAMPLE

In the following example, frame log-probabilities of input data data.f for GMM with 8 Gaussians gmm.f are written to probs.f.

```
gmmp -m 8 gmm.f data.f > probs.f
```


SEE ALSO

gimm

NAME
gnorm - gain normalization

SYNOPSIS

gnorm $\quad[-\mathbf{m} M][-\mathbf{g} G][-\mathbf{c} C][$ infile $]$

DESCRIPTION

gnorm normalizes generalized cepstral coefficients $c_{\gamma}(m)$ from infile (or standard input), sending the normalized generalized cepstral coefficients to standard output.
Both input and output files are in float format.
The normalized generalized cepstral coefficients $c_{\gamma}^{\prime}(m)$ can be written as

$$
c_{\gamma}^{\prime}(m)=\frac{c_{\gamma}(m)}{1+\gamma c_{\gamma}(0)}, \quad m>0
$$

Also, the gain $K=c_{\gamma}^{\prime}(0)$ is given by:

$$
K= \begin{cases}\left(\frac{1}{1+\gamma c_{\gamma}(0)}\right)^{1 / \gamma}, & 0<|\gamma| \leq 1 \\ \exp c_{\gamma}(0), & \gamma=0\end{cases}
$$

OPTIONS

$$
\begin{array}{lll}
\mathbf{- m} & M & \text { order of generalized cepstrum } \\
\mathbf{- \mathbf { g }} & G & \text { power parameter } \gamma \text { of generalized cepstrum, } \\
& & \gamma=G \\
-\mathbf{c} & C & \text { power parameter } \gamma \text { of generalized cepstrum, } \\
& & \gamma=-1 /(\text { int }) C \\
& & C \text { must be } C \geq 1
\end{array}
$$

EXAMPLE

In this example, generalized cepstral coefficients in float format are read from file data.gcep ($M=15, \gamma=-0.5$), normalized and output to data.ngcep:

$$
\text { gnorm -m } 15 \text {-c } 2 \text { < data.gcep > data.ngcep }
$$

NOTICE

Value of C must be $C \geq 1$

SEE ALSO

NAME
grlogsp - draw a running log spectrum graph

SYNOPSIS


```
    [ \(-\ln L N][-\mathbf{s} S][-\mathbf{e} E][-\mathbf{n} N][-\mathbf{l} L]\)
    [ -c comment 1 ] [-c2 comment 2 ] [ \(\mathbf{- c} 3\) comment 3 ] [infile ]
```


DESCRIPTION

grlogsp converts a sequence of float-format log spectra from infile (or standard input) to a running spectrum plot in FP5301 plot format, sending the result to standard output. The output can be visualized with 区gt.
grlogsp is implemented as a shell script that uses the fig and frw commands.

OPTIONS

-t	
$\mathbf{- F}$	F
$\mathbf{- O}$	O

$(Y O+100, X)[\mathrm{mm}]$ if -t is specified.

-x	X	```\(x\) scale normalized frequency \((0 \sim 0.5)\) normalized frequency \((0 \sim \pi)\) frequency (\(0 \sim 4 \mathrm{kHz}\)) frequency (\(0 \sim 5 \mathrm{kHz}\)) frequency (\(0 \sim 8 \mathrm{kHz}\)) frequency (\(0 \sim 10 \mathrm{kHz}\)) frequency (\(0 \sim 16 \mathrm{kHz}\)) frequency (\(0 \sim 22 \mathrm{kHz}\)) frequency (\(0 \sim 24 \mathrm{kHz}\)) frequency (\(0 \sim 48 \mathrm{kHz}\))```	[1]
-y	ymin	y minimum	[-100]
-yy	YY	y scale [dB/10mm]	[100]
-yo	YO	y offset	[30]
-p	p	type of pen ($1 \sim 10$)	[2]
-In	$L N$	style of line ($0 \sim 5$) (see also fig)	[1]
-S	S	start frame number	[0]
-	E	end frame number	[EOF]
-n	N	number of frame	[EOF]
-1	L	frame length. Actually $\frac{L}{2}$ data are plotted.	[256]
-c, c2, c3	comment $1 \sim 3$	comment for the graph	[N/A]

Usually, the options below do not need to be assigned.

$\mathbf{- W}$	W
$\mathbf{- H}$	H
$\mathbf{- \mathbf { z }}$	Z
$\mathbf{- 0}$	xo yo
$\mathbf{- g}$	G
$\mathbf{- c y}$	$c y$
$\mathbf{- c y 2}$	$c y 2$
$\mathbf{- c y 3}$	$c y 3$
$\mathbf{- c s}$	$c s$
$\mathbf{- f}$	f

width of the graph $(\times 100 \mathrm{~mm})$
height of the graph ($\times 100 \mathrm{~mm}$)
This option is used when data is written recursively in the y axis. the distance between two graphs in the y axis are given by Z.
If Z is not given, Z is as same as F
origin of the graph. if -o option exists, -O is
not effective.
type of frame of the graph $(0 \sim 2)$ (see also [2]
fig)
first comment position [-8]
second comment position [-14]
third comment position [-20]
font size of the comments [1]
additional data file for fig

EXAMPLE

In this example, the magnitude of log spectrum is evaluated from data in data.f file in float format, and the graph with the running spectrum is sent in Postscript format to data.ps file:
frame < data.f | window |\}

$$
\begin{aligned}
& \text { uels -m } 15 \text { | c2sp -m } 15 \text { |\} } \\
{\text { grlogsp | psgr > data.ps }}
\end{aligned}
$$

SEE ALSO

fig, fdrw, xgl, psgn, glogsp, gwave

NAME
grpdelay - group delay of digital filter

SYNOPSIS

grpdelay $[-\mathbf{l} L][-\mathbf{m} M][-\mathbf{a}][$ infile $]$

DESCRIPTION

grpdelay computes the group delay of a sequence of filter coefficients from infile (or standard input), sending the result to standard output. Input and output data are in float format.
If the $\mathbf{- m}$ option is omitted and the length of an input data sequence is less than FFT size, the input file is padded with 0 's and the FFT is evaluated as exemplified below. When the $\mathbf{- a}$ option is given, the gain is obtained from zero order input.

OPTIONS

$\mathbf{-}$	L	FFT size power of 2	$[256]$
$\mathbf{- m}$	M	order of filter	[L-1]
$\mathbf{- a}$		ARMA filter	[FALSE]

EXAMPLE

This example plots in the screen the group delay of impulse response of the filter with the following transfer function.

$$
H(z)=\frac{1}{1+0.9 z^{-1}}
$$

```
impulse | dfs -a 1 0.9 | grpdelay | fdrw | xgr
```


SEE ALSO

delay, phase

NAME
gseries - draw a discrete series

SYNOPSIS

gseries $\quad[-\mathbf{F} F][-\mathbf{s} S][-\mathbf{e} E][-\mathbf{n} N][-\mathbf{i} I][-\mathbf{y}$ ymax $][\mathbf{-} \mathbf{y} \mathbf{2}$ ymin $][-\mathbf{m} M]$ [-p P][-magic magic][-MAGIC MAGIC][+type][infile]

DESCRIPTION

gseries converts discrete series data from infile (or standard input) to FP5301 plot format, sending the result to standard output. The output can viewed with Xgr.
gseries is implemented as a shell script that uses the fig command.

OPTIONS

EXAMPLE

In the following example, gseries reads impulse response in float format from data.f and writes the output in encapsulated Postscript format to data.eps.

```
gseries +f < data.f | psgr > data.eps
```

The following example replaces the magic number 0 in data.f by 1.0 and writes the output to data.eps.

```
gseriese +f -magic 0 -MAGIC 1.0 < data.f | \
psgr > data.eps
```

Also, the following example removes the magic number 0 in data.f.

$$
\text { gseriese }+f \text {-magic } 0<\text { data.f | psgr > data.eps }
$$

NOTICE

-If options of amplitude are not used, value of amplitude is automatically determined.
-If -n option is not used, entire impluse response is displayed.
-Can not use -n option and -i option.
-If -magic option is not given, return error.
-If -magic or -MAGIC option is given mutiple times, return error.

SEE ALSO

fig, fdrw, xgl, psg1, glogsp, grlogsp, gwave

NAME
gwave - draw a waveform

SYNOPSIS

gwave $[-\mathbf{F} F][-\mathbf{s} S][-\mathbf{e} E][-\mathbf{n} N][-\mathbf{i} I][-\mathbf{y}$ ymax $][-\mathbf{y} \mathbf{2}$ ymin $][-\mathbf{p} P]$ [+type] [infile]

DESCRIPTION

gwave converts speech waveform data from infile (or standard input) to FP5301 plot format, sending the result to standard output. The output can viewed with xgr. gwave is implemented as a shell script that uses the fig and fdrw commands.

OPTIONS

-F	F	factor	[1]
-s	S	start point	[0]
-	E	end point	[EOF]
-n	N	data number of one screen if this option is omitted, all of the data is plotted on one screen.	[N/A]
-i	I	number of screen	[5]
-y	ymax	maximum amplitude if this option is omitted, ymax is maximum value of the input data.	[N/A]
-y2	ymin	minimum amplitude	[-YMAX]
-p	P	pen type ($1 \sim 10$)	[1]
$+t$		Input data format	[f]

c	char (1 byte)	C	unsigned char (1 byte)
S	short (2 bytes)	S	unsigned short (2 bytes)
i3	int (3 bytes)	I3	unsigned int (3 bytes)
1	int (4 bytes)	I	unsigned int (4 bytes)
1	long (4 bytes)	L	unsigned long (4 bytes)
le	long long (8 bytes)	LE	unsigned long long (8 bytes)
f	float (4 bytes)	d	double (8 bytes)
	long double (12 byt		

EXAMPLE

This example reads speech waveform file in float format from data.f and writes the output in Postscript format to data.ps.

```
gwave +f < data.f | psgr > data.ps
```


NOTICE

- If options of amplitude are not used, value of amplitude is automatically determined.
-If -n option is not used, entire waveform is displayed.

SEE ALSO

fig, fdrw, xgn, psgn, glogsp, grlogsp

NAME

histogram - histogram

SYNOPSIS

histogram [-lL][-iI][-jJ][-s S][-n][infile]

DESCRIPTION

histogram makes histograms of frames of input data from infile (or standard input), sending the results to standard output.
Input and output data are in float format. The output can be graphed with fdrw.
If an input value is outside the specified interval, the exit status of histogram will be nonzero, but the output histogram will still be created.

OPTIONS

-	L	frame size	[0]
		$L>0$	evaluate the histogram for every frame
		$L=0 \quad$ evaluate the histogram for the whole file	
$\mathbf{- i}$	I	infimum	$[0.0]$
$\mathbf{- j}$	J	supremum	$[1.0]$
$\mathbf{- S}$	S	step size	$[0.1]$
$\mathbf{- n}$		normalization	[FALSE]

EXAMPLE

The example below plots the histogram of the speech waveform file data.f in float format.

```
histogram -i -16000 -j 16000 -s 100 data.f | fdrw | xgr
```


NOTICE

If $L>0$, calculate histogram frame by frame.

SEE ALSO

average

NAME

idct - Inverse DCT-II

SYNOPSIS

idct [-l L][-c][-d][infile]

DESCRIPTION

$i d c t$ calculates the Inverse Discrete Cosine Transform II (IDCT-II) of input data in infile (or standard input), sending the results to standard output. The input and output data is in float format, arranged as follows.

The Inverse Discrete Cosine Transformation II is given by

$$
x_{l}=\sqrt{\frac{2}{L}} c_{l} \sum_{k=0}^{L-1} X_{k} \cos \left\{\frac{\pi}{L}\left(k+\frac{1}{2}\right) l\right\}, \quad l=0,1, \cdots, L
$$

where

$$
c_{l}= \begin{cases}1 & (1 \leq l \leq L-1) \\ 1 / \sqrt{2} & (l=0)\end{cases}
$$

OPTIONS

-l $\quad L \quad$ IDCT size
-c use complex number
-d don't use FFT algorithm

EXAMPLE

In this example, the IDCT is evaluated from a complex-valued data file data.f in float format (real part: 256 points, imaginary part: 256 points), and the output is written to data.idct:
idct data.f -1 $256-c>$ data.idct

SEE ALSO

四, det

NAME
ifft - inverse FFT for complex sequence

SYNOPSIS

ifft $[-\mathbf{l} L][-\{\mathbf{R} \mid \mathbf{I}\}][$ infile $]$

DESCRIPTION

ifft calculates the Inverse Discrete Fourier Transform (IDFT) of complex-valued data from infile (or standard input), sending the results to standard output. The input and output data is in float format, arranged as follows.

OPTIONS

$$
\begin{array}{lll}
\text {-I } & L & \text { FFT size power of } 2 \\
\text {-R } & & \text { output only real part } \\
\text {-I } & \text { output only imaginary part }
\end{array}
$$

[256]

EXAMPLE

In this example, the inverse DFT is evaluated from a data file data.f in float format (real part: 256 points, imaginary part: 256 points), and the output is written to data.ifft:

$$
\text { ifft data.f -1 } 256 \text { > data.ifft }
$$

SEE ALSO

NAME
ifft2 - 2-dimensional inverse FFT for complex sequence

SYNOPSIS

$$
\text { ifft2 }[-\mathbf{l} L][+\mathbf{r}][-\mathbf{t}][-\mathbf{c}][-\mathbf{q}][-\{\mathbf{R} \mid \mathbf{I}\}][\text { infile }]
$$

DESCRIPTION

ifft2 calculates the 2-dimensional Inverse Discrete Fourier Transform (IDFT) of complexvalued data from infile (or standard input), sending the results to standard output. The input and output data is in float format, arranged as follows.

OPTIONS

-1	L	FFT size power of 2	[64]
+r		regard input as real values rather than complex values	[FALSE]
-t		Output results in transposed form (see also [ft2).	[FALSE]
-c		When results are transposed, 1 boundary data is copied from the opposite side, and then output $(L+1) \times(L+1)$ data (see also (fft2).	[FALSE]

-q Output first $1 / 4$ of data of FFT results only. As in the above c
[FALSE] option, boundary data is compensated and $\left(\frac{L}{2}+1\right) \times\left(\frac{L}{2}+1\right)$ data are output.

FFT result
-R output only real part
-I output only imaginary part

EXAMPLE

This example reads a sequence of 2-dimensional complex numbers in float format from data.f file, evaluates its 2-dimensional IDFT and outputs it to data.dft file:
ifft2 < data.f > data.ifft2

SEE ALSO

NAME

ifftr - inverse FFT for real sequence

SYNOPSIS

ifftr [-l L][-m M][infile]

DESCRIPTION

ifftr calculates the Inverse Discrete Fourier Transform (IDFT) of real-valued data from infile (or standard input), sending the results to standard output. The input and output data is in float format, arranged as follows.

OPTIONS

$$
\begin{array}{lll}
\mathbf{- l} & L & \text { FFT size power of } 2 \\
\mathbf{- m} & M & \text { order of sequence } \tag{L-1}
\end{array}
$$

EXAMPLE

In this example, IDFT is evaluated from a data file data.f in float format (real part: 256 points, imaginary part: 256 points), and the output is written to data.ifftr:

$$
\text { ifftr data.f -1 } 256 \text { > data.ifftr }
$$

SEE ALSO

NAME
ignorm - inverse gain normalization

SYNOPSIS

ignorm [-m M][-g $G][-\mathbf{c} C][$ infile $]$

DESCRIPTION

ignorm reads normalized generalized cepstral coefficients $c_{\gamma}(m)$ from infile (or standard input), and outputs the unnormalized coefficients to standard output.
Both input and output files are in float format.
To convert normalized generalized cepstral coefficients $c_{\gamma}^{\prime}(m)$ into not-normalized generalized cepstral coefficients $c_{\gamma}(m)$, the following equation can be used.

$$
c_{\gamma}(m)=\left(c_{\gamma}^{\prime}(0)\right)^{\gamma} c_{\gamma}^{\prime}(m), \quad m>0
$$

Also, the gain $K=c_{\gamma}(0)$ is

$$
c_{\gamma}(0)= \begin{cases}\frac{\left(c_{\gamma}^{\prime}(0)\right)^{\gamma}-1.0}{\gamma}, & 0<|\gamma| \leq 1 \\ \log c_{\gamma}^{\prime}(0), & \gamma=0\end{cases}
$$

OPTIONS

-m $\quad M \quad$ order of generalized cepstrum
-g $\quad G \quad$ power parameter γ of generalized cepstrum
$\gamma=G$
-c $\quad C \quad$ power parameter γ of generalized cepstrum
$\gamma=-1 /(\mathrm{int}) C$
C must be $C \geq 1$

EXAMPLE

In this example below, normalized generalized cepstral coefficients in float format are read from data.ngcep ($M=15, \gamma=-0.5$), and the not-normalized generalized cepstral coefficients are output to data.gcep.

```
ignorm -m 15 -c 2 < data.ngcep > data.gcep
```


NOTICE

Value of C must be $C \geq 1$.

SEE ALSO

Бcep, mgcep, gc2gc, mgc2mgc, freqt

NAME

impulse - generate impulse sequence

SYNOPSIS

impulse [-l L][-n N]

DESCRIPTION

impulse generates the unit impulse sequence of length L, sending the output to standard output. The output is in float format as follows.

$$
\underbrace{1,0,0, \ldots, 0}_{L}
$$

If both -l and -n options are given, the last one is used.

OPTIONS

-l L length of unit impulse
if $L<0$ then endless sequence is generated.
-n $\quad N$ order of unit impulse

EXAMPLE

In the example below, an unit impulse sequence is passed through a digital filter and the results are shown on the screen.

$$
\text { impulse | dfs -a } 10.9 \text {-b } 121 \text { | dmp +f }
$$

NOTICE

If $L<0$, generate infinite sequence.

SEE ALSO

step, train, ramp, sin, mrand

NAME
imsvq - decoder of multi stage vector quantization

SYNOPSIS

$\operatorname{imsvq} \quad[-\mathbf{l} L][-\mathbf{n} N][-\mathbf{s} S$ cbfile $][$ infile $]$

DESCRIPTION

imsvq decodes multi-stage vector-quantized data from a sequence of codebook indexes from infile (or standard input), using codebooks specified by multiple -s options, sending the result to standard output. The number of decoder stages is equal to the number of -s options.
Input data is in int format, and output data is in float format.

OPTIONS

$\mathbf{- l}$	L	length of vector	$[26]$
$\mathbf{- n}$	N	order of vector	$[\mathrm{L}-1]$
$\mathbf{- s}$	S cbfile	codebook	$[\mathrm{N} / \mathrm{A}$ N/A]

EXAMPLE

In the example below, the decoded vector data.ivq is obtained from the first stage codebook cbfilel and the second stage codebook cbfile 2 , both of size 256 , as well as from the index file data.vq.

```
imsvq -s 256 cbfile1 -s 256 cbfile2 < data.vq > data.ivq
```


NOTICE

The -s option is specified number of stages.

SEE ALSO

misvq, ivq, vq

NAME

interpolate - interpolation of data sequence

SYNOPSIS

interpolate $[-\mathbf{p} P][-\mathbf{s} S][-1 L][-d][$ infile $]$

DESCRIPTION

This function interpolates data points into the input data, with interval P and start number S, and sends the result to standart output. The results are as follows:

$$
x(0), x(1), x(2), \ldots
$$

then the output data will be

$$
\underbrace{0,0, \ldots, 0}_{S-1}, \underbrace{x(0), 0,0, \ldots, 0}_{P}, \underbrace{x(1), 0,0, \ldots, 0}_{P}, x(2), \ldots
$$

If the -d option is given, the output data will be

$$
\underbrace{0,0, \ldots, 0}_{S-1}, \underbrace{x(0), x(0), x(0), \ldots, x(0)}_{P}, \underbrace{x(1), x(1), x(1), \ldots, x(1)}_{P}, x(2), \ldots
$$

Input and output data are in float format.

OPTIONS

-l $\quad L \quad$ length of vector
-p P interpolation period [10]
-s $\quad S \quad$ start sample [0]
-d pad input data rather than 0

EXAMPLE

This example decimates input data from data.f file with interval 2 , interpolates 0 with interval 2, and then outputs it to data.di file:

$$
\text { decimate -p } 2 \text { < data.f | interpolate -p } 2 \text { > data.di }
$$

SEE ALSO

NAME
ivq - decoder of vector quantization

SYNOPSIS

$$
\text { ivq }[-\mathbf{l} L][-\mathbf{n} N] \text { cbfile }[\text { infile }]
$$

DESCRIPTION

ivq decodes vector-quantized data from a sequence of codebook indexes from infile (or standard input), using the codebook cbfile, sending the result to standard output. The decoded output vector is of the form:

$$
c_{i}(0), c_{i}(1), \ldots, c_{i}(L-1) .
$$

Input data is in int format, and output data is in float format.

OPTIONS

$$
\begin{array}{lll}
\text {-l } & L & \text { length of vector } \tag{26}\\
\text {-n } & N & \text { order of vector }
\end{array}
$$

EXAMPLE

In the following example, the decoded 25-th order output file data.ivq is obtained through the index file data.vq and codebook cbfile.
ivq cbfile data.vq > data.ivq

SEE ALSO

vq, 1msvq, msva

NAME
lbg - LBG algorithm for vector quantizer design

SYNOPSIS

$\operatorname{lbg} \quad[-\mathbf{l} L][-\mathbf{n} N][-\mathbf{t} T][-\mathbf{s} S][-\mathbf{e} E][-\mathbf{F} F][-\mathbf{i} I][-\mathbf{m} M][-\mathbf{S} s]$

$$
[-\mathbf{c} C][-\mathbf{d} D][-\mathbf{r} R][\text { indexfile }]<\text { infile }
$$

DESCRIPTION

$l b g$ uses the LBG algorithm to train a codebook from a sequence of vectors from infile (or standard input), sending the result to standard output.
The input sequence consists of T float vectors \boldsymbol{x}, each of size L

$$
x(0), x(1), \ldots, x(T-1)
$$

The result is a codebook consisting of E float vectors, each of length L,

$$
\boldsymbol{C}_{E}=\left\{\boldsymbol{c}_{E}(0), \boldsymbol{c}_{E}(1), \ldots, \boldsymbol{c}_{E}(E-1)\right\},
$$

generated by the following algorithm.
step. 0 When an initial codebook \boldsymbol{C}_{S} is not assigned, the initial codebook is obtained from the whole collection of training data as follows,

$$
\boldsymbol{c}_{1}(0)=\frac{1}{T} \sum_{n=0}^{T-1} \boldsymbol{x}(n)
$$

and the initial codebook with $S=1$ is $\boldsymbol{C}_{1}=\left\{\boldsymbol{c}_{1}(0)\right\}$.
step. 1 From codebook \boldsymbol{C}_{S} obtain $\boldsymbol{C}_{2 S}$. For this step, the normalized random vector of size L and the splitting factor R are used as follows,

$$
\boldsymbol{c}_{2 S}(n)= \begin{cases}\boldsymbol{c}_{S}(n)+R \cdot \mathbf{r n d} & (0 \leq n \leq S-1) \\ \boldsymbol{c}_{S}(n-S)-R \cdot \mathbf{r n d} & (S \leq n \leq 2 S-1)\end{cases}
$$

and we make $D_{0}=\infty, k=0$.
step. 2 First, make sure that $k \leq I$ where I is the maximum iterations number specified by -i option. If it is true, proceed to the following steps. If not, then go to step.4. The present codebook $\boldsymbol{C}_{2 S}$ is now applied to the training vectors. After that, the mean Euclidean distance D_{k} is evaluated from every training vector and their corresponding code vector. If the following condition

$$
\left|\frac{D_{k-1}-D_{k}}{D_{k}}\right|<D
$$

Figure 3: step.0: initialize codebook

Figure 5: step.2: update codebook
is met, then go to step.4. If it is not met, then go to step.3. The steps 0,1 , and

$$
\left|\frac{D_{k-1}-D_{k}}{D_{k}}\right|<D
$$

step. 3 Centroids are evaluated from the results obtained in step.2. Then, the codebook $\boldsymbol{C}_{2 S}$ is updated. Also, if a cell has less than M training vectors, then the corresponding code vector is erased from the codebook, and a new code vector is generated from either: 1) the code vector $\boldsymbol{c}_{2 S}(j)$ corresponding to the cell with more training vectors , as follows.

$$
\boldsymbol{c}_{2 S}(i)=\boldsymbol{c}_{2 S}(j)+R \cdot \mathbf{r n d}
$$

Also, $\boldsymbol{c}_{2 S}(j)$ is modified as follows.

$$
\boldsymbol{c}_{2 S}(j)=\boldsymbol{c}_{2 S}(j)-R \cdot \mathbf{r n d}
$$

2) the vector \boldsymbol{p}, which internally divides two centroids proportionally the number of training vectors for the cell. They are split from the same parent centroid. The vector \boldsymbol{p} is given by:

$$
\boldsymbol{p}=\frac{n_{j} \boldsymbol{c}_{2 S}(i)+n_{i} \boldsymbol{c}_{2 S}(j)}{n_{i}+n_{j}},
$$

where n_{i} and n_{j} represent the number of training vectors for the cells $\boldsymbol{c}_{2 S}(i) a n d \boldsymbol{c}_{2 S}(j)$, respectivelly. The update method is as follows.

$$
\begin{aligned}
& \boldsymbol{c}_{2 S}(i)=\boldsymbol{p}+R \cdot \mathbf{r n d}, \\
& \boldsymbol{c}_{2 S}(j)=\boldsymbol{p}-R \cdot \mathbf{r n d} .
\end{aligned}
$$

If the number of traning vectors for the cell is less than M when $k=3$, the dividing vector \boldsymbol{p} and the update results are given as follows:

The type of split can be specified by the -c option. After that, we assign $k=k+1$ and then go back to step. 2
step. 4 If $2 S=E$ then, end. If not, then make $S=2 S$ and go back to step.1.

OPTIONS

$\mathbf{- l}$	L	length of vector
$\mathbf{- n}$	N	order of vector
$\mathbf{- t}$	T	number of training vector
$\mathbf{- s}$	S	initial codebook size
$\mathbf{- e}$	E	final codebook size
$\mathbf{- F}$	F	initial codebook filename
$\mathbf{- i}$	I	maximum number of iteration for centroid update
$\mathbf{- \mathbf { m }}$	M	minimum number of training vectors for each cell
$\mathbf{- S}$	S	seed for normalized random vector

-s $\quad S \quad$ initial codebook size
-c C type of exception procedure for centroid update
when the number of training vectors for the cell is less than M
$C=1 \quad$ split the centroid with most training vectors
$C=2$ split the vector which internally divide
two centroids sharing the same parent centroid,
in proportion to the number of training vectors for the cell.
Usually, the options below do not need to be assigned.
-d $\quad D$ end condition
[0.0001]
$-\mathbf{r} \quad$ splitting factor

EXAMPLE

In the following example, a codebook of size 1024 is generated from the 39-th order training vector data. f in float format. It is also specified that the iterations for the centroid update are at most 100 times, that each centroid contains at least 10 training vectors and that random vectors for the centroid update are generated with seed 5 . The output is written to cbfile.

$$
\text { lbg -n } 39 \text {-e } 1024 \text {-i } 100 \text {-m } 10 \text {-S } 5 \text { < data.f > cbfile }
$$

NOTICE

The -t option can be omitted, when input from redirect.

SEE ALSO

vq, ivq, misvq

NAME
levdur - solve an autocorrelation normal equation using Levinson-Durbin method

SYNOPSIS

levdur $\quad[-\mathbf{m} M][-\mathbf{f} F][$ infile $]$

DESCRIPTION

levdur calculates linear prediction coefficients (LPC) from the autocorrelation matrix from infile (or standard input), sending the result to standard output.

The input is the M-th order autocorrelation matrix

$$
r(0), r(1), \ldots, r(M)
$$

levdur uses the Levinson-Durbin algorithm to solve a system of linear equations obtained from the autocorrelation matrix.

Input and output data are in float format.
The linear prediction coefficients are the set of coefficients $K, a(1), \ldots, a(M)$ of an allpole digital filter

$$
H(z)=\frac{K}{1+\sum_{i=1}^{M} a(k) z^{-i}} .
$$

The linear prediction coefficients are evaluated by solving the following set of linear equations, which were obtained through the autocorrelation method,

$$
\left(\begin{array}{cccc}
r(0) & r(1) & \ldots & r(M-1) \\
r(1) & r(0) & & \vdots \\
\vdots & & \ddots & \\
r(M-1) & & \ldots & r(0)
\end{array}\right)\left(\begin{array}{c}
a(1) \\
a(2) \\
\vdots \\
a(M)
\end{array}\right)=-\left(\begin{array}{c}
r(1) \\
r(2) \\
\vdots \\
r(M)
\end{array}\right)
$$

The Durbin iterative and efficient algorithm is used to solve the system above. It takes advantage of the Toeplitz characteristic of the autocorrelation matrix:

$$
\begin{align*}
E^{(0)}= & r(0) \\
& -r(i)-\sum_{j=1}^{i} a^{(i-1)}(j) r(i-j) \\
k(i)= & E^{(i-1)} \\
a^{(i)}(i)= & k(i) \tag{1}\\
a^{(i)}(j)= & a^{(i-1)}(j)+k(i) a^{(i-1)}(i-j), \quad 1 \leq j \leq i-1 \tag{2}\\
E^{(i)}= & \left(1-k^{2}(i)\right) E^{(i-1)}
\end{align*}
$$

Also, for $i=1,2, \ldots, M$, equations (\mathbb{I}) and (Z) are applied recursively, and the gain K is calculated as follows.

$$
K=\sqrt{E^{(M)}}
$$

OPTIONS

-m $\quad M \quad$ order of correlation
[25]
-f $\quad F \quad$ mimimum value of the determinant of the normal matrix
[0.000001]

EXAMPLE

In this example, input data is read in float format from data.f and linear prediction coefficients are written to data.lpc:

$$
\text { frame < data.f | window | acorr -m } 25 \text { | levdur > data.lpc }
$$

SEE ALSO

acom, 『p

NAME
linear_intpl - linear interpolation of data

SYNOPSIS

linear intpl $[-\mathbf{l} L][-\mathbf{m} M]\left[-\mathbf{x} x_{\min } x_{\max }\right]\left[-\mathbf{i} x_{\min }\right]\left[-\mathbf{j} x_{\max }\right][$ infile $]$

DESCRIPTION

linear_intpl reads a 2-dimensional input data sequence from infile (or standard input) in which the x-axis values are linearly interpolated by equally-spaced $L-1$ points, and outputs the y-axis values.

If the input data is

$$
\begin{gathered}
x_{0}, y_{0} \\
x_{1}, y_{1} \\
\vdots \\
x_{K}, y_{K}
\end{gathered}
$$

then the output data will be

$$
y_{0}, y_{1}, \ldots, y_{L-1}
$$

Input and output data are in float format.
This command can also interpolate data sequence in which the x-axis values are not equally-spaced, such as digital filter characteristics.

OPTIONS

$\mathbf{-}$	L	output length	$[256]$
$\mathbf{- m}$	M	number of interpolation points	$[\mathrm{L}-1]$
$\mathbf{- \mathbf { x }}$	$x_{\text {min }} x_{\max }$	minimum and maximum values of x-axis in input data	$[0.00 .5]$
$\mathbf{- i}$	$x_{\text {min }}$	minimum values of x-axis in input data	$[0.0]$
$\mathbf{- j}$	$x_{\text {max }}$	maximum values of x-axis in input data	$[0.5]$

EXAMPLE

This example decimates input data from data.f file with interval 2, interpolates 0 with interval 2, and then outputs it to data.di file:

When input data data.f contains the following data,

0,2
2,2
3, 0
5,1
this example linearly interpolates input data and outputs it to data.intpl

$$
\text { linear_intpl -m } 10 \text {-x } 05 \text { < data.f > data.intpl }
$$

And the result is given by:

$$
2,2,2,2,2,1,0,0.25,0.5,0.75,1
$$

NAME
lmadf - LMA digital filter for speech synthesis[5], 17]

SYNOPSIS

lmadf $[-\mathbf{m} M][-\mathbf{p} P][-\mathbf{i} I][-\mathbf{P} P a][-\mathbf{v}][-\mathbf{t}][-\mathbf{k}]$ cfile [infile $]$

DESCRIPTION

lmadf derives a Log Magnitude Approximation filter from the cepstral coefficients $c(0), c(1), \ldots, c(M)$ in cfile and uses it to filter an excitation sequence from infile (or standard input) in order to synthesize speech data, sending the result to standard output.

Input and output data are in float format.
The LMA filter is an extremely precise approximation of the exponential transfer function obtained from M-th order cepstral coefficients $c(m)$ as follows.

$$
H(z)=\exp \sum_{m=0}^{M} c(m) z^{-m}
$$

If we remove the gain $K=\exp c(0)$ from the transfer function $H(z)$, then we obtain the following transfer function

$$
D(z)=\exp \sum_{m=1}^{M} c(m) z^{-m}
$$

which can be realized using the basic FIR filter

$$
F(z)=\sum_{m=1}^{M} c(m) z^{-m}
$$

as shown in Figure $\mathbb{T}(\mathrm{a})$. Also, as it can be seen in Figure $\mathbb{T}(\mathrm{b})$, the basic filter $F(z)$ can be decomposed as follows

$$
F(z)=F_{1}(z)+F_{2}(z)
$$

where

$$
\begin{aligned}
& F_{1}(z)=c(1) z^{-1} \\
& F_{2}(z)=\sum_{m=2}^{M} c(m) z^{-m}
\end{aligned}
$$

By doing this decomposition, the accuracy of the approximation is improved. Also, the values of the coefficients $A_{4, l}$ are given in table []

(a)

(b)

Figure 1: (a) $R_{L}(F(z)) \simeq D(z) \quad L=4$
(b) 2 level cascade realization

$$
R_{L}\left(F_{1}(z)\right) \cdot R_{L}\left(F_{2}(z)\right) \simeq D(z)
$$

Table 1: The values for the coefficients $A_{L, l}$

l	$A_{4, l}$	$A_{5, l}$
1	4.999273×10^{-1}	4.999391×10^{-1}
2	1.067005×10^{-1}	1.107098×10^{-1}
3	1.170221×10^{-2}	1.369984×10^{-2}
4	5.656279×10^{-4}	9.564853×10^{-4}
5		3.041721×10^{-5}

OPTIONS

$\mathbf{- m}$	M	order of cepstrum
$\mathbf{- p}$	P	frame period
$\mathbf{- i}$	I	interpolation period
$\mathbf{- P}$	$P a$	order of the Padé approximation
		$P a$ should be 4 or 5
$\mathbf{- k}$		filtering without gain $\mathbf{- v}$
inverse filter		

EXAMPLE

In this example, the excitation is generated from the pitch data read in float format from data.pitch, passed through an LMA filter obtained from cepstrum file data.cep, and the synthesized speech is written to data.syn.
excite < data.pitch | lmadf data.cep > data.syn

NOTICE

$$
P a=4 \text { or } 5 .
$$

SEE ALSO

ueds, acep, poledt, Itcdt, glsadt, mlsadt, mglsadt

NAME
lpc - LPC analysis using Levinson-Durbin method

SYNOPSIS

lpe $\quad[-\mathbf{l} L][-\mathbf{m} M][-\mathbf{f} F][$ infile $]$

DESCRIPTION

$l p c$ calculates linear prediction coefficients (LPC) from L-length framed windowed data from infile (or standard input), sending the result to standard output.
For each L-length input vector

$$
x(0), x(1), \ldots, x(L-1)
$$

the autocorrelation function is calculated (see acom), then the gain K and the linear prediction coefficients

$$
K, a(1), \ldots, a(M)
$$

are calculated using the Levinson-Durbin algorithm (see חevdurl).
Input and output data are in float format.

OPTIONS

$\mathbf{-}$	L	frame length	$[256]$
$\mathbf{- m}$	M	order of LPC	$[25]$
$\mathbf{- f}$	F	mimimum value of the determinant of the normal matrix	$[0.000001]$

EXAMPLE

In this example, the 20 -th order linear prediction analysis is applied to input read from data.f in float format, and the linear prediction coefficients are written to data.lpc:

$$
\text { frame < data.f | window | lpc -m } 20 \text { > data.lpc }
$$

SEE ALSO

NAME
lpc2c - transform LPC to cepstrum

SYNOPSIS

lpc2c $\left[-\mathbf{m} M_{1}\right]\left[-\mathbf{M} M_{2}\right][$ infile $]$

DESCRIPTION

$l p c 2 c$ calculates LPC cepstral coefficients from linear prediction (LPC) coefficients from infile (or standard input), sending the result to standard output. That is, when the input sequence is

$$
\sigma, a(1), a(2), \ldots, a(p)
$$

where

$$
H(z)=\frac{\sigma}{A(z)}=\frac{\sigma}{1+\sum_{k=1}^{P} a(k) z^{-k}}
$$

then the LPC cepstral coefficients are evaluated as follows.

$$
c(n)= \begin{cases}\ln (h), & n=0 \\ -a(n)=-\sum_{k=1}^{n-1} \frac{k}{n} c(k) a(n-k), & 1 \leq n \leq P \\ -\sum_{k=n-P}^{n-1} \frac{k}{n} c(k) a(n-k), & n>P\end{cases}
$$

And the sequence of cepstral coefficients

$$
c(0), c(1), \ldots, c(M)
$$

is given as output. Input and output data are in float format.

OPTIONS

-m $\quad M_{1} \quad$ order of LPC
-M $\quad M_{2} \quad$ order of cepstrum

EXAMPLE

In the example below, a 10 -th order LPC analysis is undertaken after passing the speech data data.f in float format through a window, 15-th order LPC cepstral coefficients are calculated, and the result is written to data.cep.

$$
\begin{aligned}
& \text { frame < data.f | window | lpc -m } 10 \text { |\ } \\
& \text { lpc2c -m } 10-\mathrm{M} 15 \text { > data.cep }
\end{aligned}
$$

SEE ALSO

Ipc, ${ }^{\text {gc } 2 g c, ~}$ mgc2mgc, freqt

NAME
lpc21sp - transform LPC to LSP

SYNOPSIS

$$
\begin{aligned}
& \text { lpc2lsp } \quad[-\mathbf{m} M][-\mathbf{s} S][-\mathbf{k}][-\mathbf{L}][-\mathbf{o} O][-\mathbf{n} N][-\mathbf{p} P][-\mathbf{q} Q][-\mathbf{d} D] \\
& {[\text { infile }]}
\end{aligned}
$$

DESCRIPTION

$l p c 2 l s p$ calculates line spectral pair (LSP) coefficients from M-th order linear prediction (LPC) coefficients from infile (or standard input), sending the result to standard output.
Although the gain K is included in the LPC input vectors as follows

$$
K, a(1), \ldots, a(M)
$$

K is not used in the calculation of the LSP coefficients.
The M-th order polynomial linear prediction equation $A(z)$ is

$$
A_{M}(z)=1+\sum_{m=1}^{M} a(m) z^{-m}
$$

The PARCOR coefficients satisfy the following equations.

$$
\begin{aligned}
& A_{m}(z)=A_{m-1}(z)-k(m) B_{m-1}(z) \\
& B_{m}(z)=z^{-1}\left(B_{m-1}(z)-k(m) A_{m-1}(z)\right)
\end{aligned}
$$

Also, the initial conditions are set as follows,

$$
\begin{align*}
& A_{0}(z)=1 \\
& B_{0}(z)=z^{-1} . \tag{1}
\end{align*}
$$

When the linear prediction polynomial equation of M-th order $A_{M}(z)$ are given, and the evaluation of $A_{M+1}(z)$ is obtained with the value of $k(M+1)$ set to 1 or -1 , then $P(z)$ and $Q(z)$ are defined as follow.

$$
\begin{aligned}
& P(z)=A_{M}(z)-B_{M}(z) \\
& Q(z)=A_{M}(z)+B_{M}(z)
\end{aligned}
$$

Making $k(M+1)$ equal to ± 1 means that, regarding PARCOR coefficients, the boundary condition for the glottis of the fixed vocal tract model satisfies a perfect reflection characteristic. Also, $A_{M}(z)$ can be written as

$$
A_{M}(z)=\frac{P(z)+Q(z)}{2}
$$

Also, to make sure the roots of $A_{M}(z)=0$ will all be inside the unit circle, i.e. to make sure $A_{M}(z)$ is stable, the following conditions must be met.

- All of the roots of $P(z)=0$ and $Q(z)=0$ are on the unit circle line.
-the roots of $P(z)=0$ and $Q(z)=0$ should be above the unit circle line and intercalate.

If we assume that M is an even number, then $P(z)$ and $Q(z)$ can be factorized as follows.

$$
\begin{aligned}
& P(z)=\left(1-z^{-1}\right) \prod_{i=2,4, \ldots, M}\left(1-2 z^{-1} \cos \omega_{i}+z^{-2}\right) \\
& Q(z)=\left(1+z^{-1}\right) \prod_{i=1,3, \ldots, M-1}\left(1-2 z^{-1} \cos \omega_{i}+z^{-2}\right)
\end{aligned}
$$

Also, the values of ω_{i} will satisfy the following ordering condition.

$$
0<\omega_{1}<\omega_{2}<\cdots<\omega_{M-1}<\omega_{M}<\pi
$$

If M is an odd number, a solution can be found in a similar way.
The coefficients ω_{i} obtained through factorization are called LSP coefficients.

OPTIONS

-m	M	order of LPC
-s	S	sampling frequency (kHz)
-k		output gain
-L		output log gain instead of linear gain
-0	O	output format
		0 normalized frequency ($0 \ldots \pi$)
		1 normalized frequency ($0 \ldots 0.5$)
		2 frequency (kHz)
		3 frequency (Hz)

Usually, the options below do not need to be assigned.
-n $\quad N \quad$ split number of unit circle
-p $\quad P \quad$ maximum number of interpolation
-d $\quad D$ end condition of interpolation

EXAMPLE

In the following example, speech data is read in float format from data.f, 10 -th order LPC coefficients are calculated, and the LSP coefficients are evaluated and written to data.lsp:

```
frame < data.f | window | lpc -m 10 |\
lpc2lsp -m 10 > data.lsp
```


SEE ALSO

Ipc, |lsp2lpc, |lspdf

NAME
lpc2par - transform LPC to PARCOR

SYNOPSIS

lpc2par $[-\mathbf{m} M][-\mathbf{g} G][-\mathbf{c} C][-\mathrm{s}][$ infile $]$

DESCRIPTION

$l p c 2 p a r$ calculates PARCOR coefficients from M-th order linear prediction (LPC) coefficients from infile (or standard input), sending the result to standard output.
The LPC input format is

$$
K, a(1), \ldots, a(M)
$$

and the PARCOR output format is

$$
K, k(1), \ldots, k(M)
$$

If the $-s$ option is assigned, the stability of the filter is analyzed. If the filter is stable, then 0 is returned. If the filter is not stable, then 1 is returned to the standard output.
Input and output data are in float format.
The transformation from LPC coefficients to PARCOR coefficients is undertaken as follows:

$$
\begin{aligned}
k(m) & =a^{(m)}(m) \\
a^{(m-1)}(i) & =\frac{a^{(m)}(i)+a^{(m)}(m) a^{(m)}(m-i)}{1-k^{2}(m)}
\end{aligned}
$$

where $1 \leq i \leq m-1, m=p, p-1, \ldots, 1$. The initial condition is

$$
a^{(M)}(m)=a(m), \quad 1 \leq m \leq M .
$$

If we use the -g option, then the input contains normalized generalized cepstral coefficients with power parameter γ and the output contains the corresponding PARCOR coefficients. In other words, the input is

$$
K, c_{\gamma}^{\prime}(1), \ldots, c_{\gamma}^{\prime}(M)
$$

and the initial condition is

$$
a^{(M)}(m)=\gamma c_{\gamma}^{\prime}(M), \quad 1 \leq m \leq M .
$$

Also with respect to the stability analysis, the PARCOR coefficients are checked through the following equation.

$$
-1<k(m)<1
$$

If this condition satisfy then the filter is stable.

OPTIONS

$\mathbf{- m}$	M	order of LPC
$\mathbf{- \mathbf { g }}$	G	gamma of generalized cepstrum
		$\gamma=G$ gamma of generalized cepstrum -c
		$\gamma=-1 /($ int $) C$ C must be $C \geq 1$
-s		check stable or unstable

EXAMPLE

In the example below, a linear prediction analysis is done in the input file data.f in float format, the LPC coefficients are then transformed into PARCOR coefficients, and the output is written to data.rc:

```
frame < data.f | window | lpc | lpc2par > data.rc
```


NOTICE

Value of C must be $C \geq 1$.

SEE ALSO

acom, levdur, Ipc, par2lpc, Itcd\#

NAME
1sp2lpc - transform LSP to LPC

SYNOPSIS

lsp2lpc $[-\mathbf{m} M][-\mathbf{s} S][-\mathbf{k}][-\mathbf{L}][-\mathbf{q} Q][$ infile $]$

DESCRIPTION

$l s p 2 l p c$ calculates linear prediction (LPC) coefficients from M-th order line spectral pair (LSP) coefficients from infile (or standard input), sending the result to standard output.
The LSP input input format is

$$
[K], l(1), \ldots, l(M)
$$

and the LPC output format is

$$
K, a(1), \ldots, a(M)
$$

By default, $l s p 2 l p c$ assumes that the LSP input vectors include the gain K, and it passes that gain value through to the LPC output vectors. However, if the -k option is present, $l s p 2 l p c$ assumes that K is not present in the LSP input vectors, and it sets K to 1.0 in the LPC output vectors.

OPTIONS

$\mathbf{- m}$	M	order of LPC	[25]
$\mathbf{- s}$	S	sampling frequency (kHz)	[10.0]
$\mathbf{- k}$		input \& output gain	[TRUE]
$\mathbf{- \mathbf { L }}$		regard input as log gain and output linear gain	[FALSE]
$\mathbf{- q}$	Q	input format	[0]
		0	normalized frequency $(0 \ldots \pi)$
		1	normalized frequency $(0 \ldots 0.5)$
		frequency (kHz)	
		frequency (Hz)	

EXAMPLE

In the example below, 10 -th order LSP coefficients in float format are read from file data.lsp, the linear prediction coefficients are evaluated, and written to data.lpc:

$$
\text { lsp2lpc }-\mathrm{m} 10<\text { data.lsp > data.lpc }
$$

SEE ALSO

|lp, |pc2lsp

NAME

lsp2sp - transform LSP to spectrum

SYNOPSIS

lsp2sp $\quad[-\mathbf{m} M][-\mathbf{s} S][-\mathbf{l} L][-\mathbf{L}][-\mathbf{k}][-\mathbf{q} Q][-\mathbf{o} O][$ infile $]$

DESCRIPTION

$l s p 2 s p$ calculates the spectrum from the line spectral pairs (LSP) from infile (or standard input), sending the result to standard output.

Input and output data are in float format.
The LSP input format is

$$
[K], l(1), \ldots, l(M) .
$$

The spectrum can be obtained by

$$
\left|H\left(\mathrm{e}^{-j \omega}\right)\right|=\frac{K}{\left|A_{p}\left(\mathrm{e}^{-j \omega}\right)\right|} .
$$

where $\left|A_{p}\left(\mathrm{e}^{-j \omega}\right)\right|$ is given as follows:
When the order of LSP is even,

$$
\left|A_{p}\left(\mathrm{e}^{-j \omega}\right)\right|=\sqrt{2^{M}\left\{\cos ^{2} \frac{\omega}{2} \prod_{i=1,3, \cdots, \cdots-1}(\cos \omega-\cos l(i))^{2}+\sin ^{2} \frac{\omega}{2} \prod_{i=2,4, \cdots, M}(\cos \omega-\cos l(i))^{2}\right\}} .
$$

When the order of LSP is odd,

$$
\left|A_{p}\left(\mathrm{e}^{-j \omega}\right)\right|=\sqrt{2^{M-1}\left\{\prod_{i=1,3, \cdots, M}(\cos \omega-\cos l(i))^{2}+\sin ^{2} \omega \prod_{i=2,4, \cdots, M-1}(\cos \omega-\cos l(i))^{2}\right\}} .
$$

OPTIONS

-m $\quad M \quad$ order of LSP
-s $\quad S \quad$ sampling frequency (kHz)
-l $\quad L \quad$ frame length
-q $\quad Q \quad$ input format
-L regard input log gain as linear one

0 normalized frequency $(0 \ldots \pi)$
1 normalized frequency ($0 \ldots 0.5$)
2 frequency (kHz)
3 frequency (Hz)

$$
\begin{array}{ll}
0 & 20 \times \log |H(z)| \\
1 & \ln |H(z)| \\
2 & |H(z)| \\
3 & |H(z)|^{2}
\end{array}
$$

EXAMPLE

The example below takes the 15-th order LSP from the file data.cep in float format, evaluates the spectrum, and presents it in the screen:

$$
\text { lsp2sp -m } 15 \text { data.lsp | glogsp | xgr }
$$

SEE ALSO

|pc21sp, Ispcheck

NAME

lspcheck - check stability and rearrange LSP

SYNOPSIS

lspcheck $[-\mathbf{m} M][-\mathbf{s} S][-\mathbf{k}][-\mathbf{L}][-\mathbf{q} Q][-\mathbf{o} O][-\mathbf{r} R][-\mathbf{G} G][-\mathbf{g}][$ infile]

DESCRIPTION

lspcheck tests the stability of the filter corresponding to the line spectral pair (LSP) coefficients from infile (or standard input), sending the result to standard output.
By default, the output is the same as the input. When the -c option is given, the output is LSP coefficients that have been rearranged so the filter is stable. If an frame is unstable, an ASCII report of the number of the frame is sent to standard error.

OPTIONS

-m	M	order of LPC	[25]
-s	S	sampling frequency (kHz)	[10.0]
-k		input \& output gain	[TRUE]
-L		regard input as log gain	[FALSE]
-q	Q	input format	[0]
-0	O	output format	[I]
		0 normalized frequency ($0 \ldots \pi$)	
		1 normalized frequency ($0 \ldots 0.5$)	
		2 frequency (kHz)	
		3 frequency (Hz)	
-c		rearrange LSP	[N/A]
		check the distance between two consecutive LSPs and extend the distance (if it is smaller than $R \times \pi / M$)	
-r	R	threshold of rearrangement of LSP	[0.0]
		s.t. $0 \leq R \leq 1$	
-G	G	minimum value of gain	[1e-10]
		G must be greater than 0 .	
-g		modify gain value if gain is less than G.	[FALSE]

EXAMPLE

In the following example, 10-th order LSP coefficients are read from data.lsp in float format, stability is checked, the unstable coefficients are rearranged so that they become stable, and the distance between two consecutive LSPs are extended to $\pi / 1000$ if it is smaller than $\pi / 1000$, and the rearranged LSP coefficients are written to data.lspr:

$$
\text { lspcheck -m } 10 \text {-c -r } 0.01 \text { < data.lsp > data.lspr }
$$

LSPCHECK	Speech Signal Processing Toolkit	LSPCHECK	125

SEE ALSO

『pc, ॥pc21sp, ॥sp21pc

NAME
lspdf - LSP speech synthesis digital filter

SYNOPSIS

lspdf $[-\mathbf{m} M][-\mathbf{p} P][-\mathbf{i} I][-\mathbf{s} S][-\mathbf{o} O][-\mathbf{k}][-\mathbf{L}]$ lspfile $[$ infile $]$

DESCRIPTION

$l s p d f$ derives an LSP digital filter from the line spectral pair (LSP) coefficients in lspfile and uses it to filter an excitation sequence from infile (or standard input) and synthesize speech data, sending the result to standard output.
Both input and output files are in float format.

OPTIONS

$\mathbf{- m}$	M	order of coefficients
$\mathbf{- p}$	P	frame period
$\mathbf{- i}$	I	interpolation period
$\mathbf{- k}$		filtering without gain $\mathbf{- L}$
	regard input as log gain	

EXAMPLE

In the example below, excitation is generated from the pitch information given in data.pitch in float format. This excitation is passed through the LSP synthesis filter constructed from the LSP file data.lsp, and the synthesized speech is written to data.syn:

```
excite < data.pitch | lspdf data.lsp > data.syn
```


SEE ALSO

|spcheck, |pc21sp

NAME
ltcdf - all-pole lattice digital filter for speech synthesis

SYNOPSIS

ltcdf $[-\mathbf{m} M][-\mathbf{p} P][-\mathbf{i} I][-\mathbf{k}]$ rcfile $[$ infile $]$

DESCRIPTION

$l t c d f$ derives an all-pole lattice digital filter from PARCOR coefficients in rcfile and uses it to filter an excitation sequence from infile (or standard input) and synthesize speech data, sending the result to standard output.

Both input and output files are in float format.

OPTIONS

$\mathbf{- m}$	M	order of coefficients	$[25]$
$\mathbf{- p}$	P	frame period	$[100]$
$\mathbf{- i}$	I	interpolation period	$[1]$
$\mathbf{- k}$		filtering without gain	[FALSE

EXAMPLE

In the example below, excitation is generated from the pitch information given in data.pitch in float format. This excitation is passed through the lattice filter constructed from the LPC file data.rc, and the synthesized speech is written to data.syn:

```
excite < data.pitch | ltcdf data.k > data.syn
```


SEE ALSO

॥pc, acom, ॥evdur, ॥pc2par, par2lpd, poledt, zerodt, ॥spdt

NAME
mc2b - transform mel-cepstrum to MLSA digital filter coefficients

SYNOPSIS

$$
\text { mc2b }[-\mathbf{a} A][-\mathbf{m} M][\text { infile }]
$$

DESCRIPTION

$m c 2 b$ calculates MLSA filter coefficients $b(m)$ from mel-cepstral coefficients $c_{\alpha}(m)$ from infile (or standard input), sending the result to standard output.
Both input and output files are in float format.
The coefficients are given as follows:

$$
b(m)= \begin{cases}c_{\alpha}(M), & m=M \\ c_{\alpha}(m)-\alpha b(m+1), & 0 \leq m<M\end{cases}
$$

These coefficients $b(m)$ can be directly used in the implementation of a MLSA filter. $m c 2 b$ implements the inverse transformation undertaken by the command $\mathbf{b 2 m c}$.

OPTIONS

$$
\begin{array}{lll}
\mathbf{- a} & A & \text { all-pass constant } \alpha \\
\mathbf{- m} & M & \text { order of mel-cepstrum } \tag{25}
\end{array}
$$

EXAMPLE

In the example below, speech data is read in float format from data.f, a 12-th order mel-cepstral analysis is undertaken, these mel-cepstral coefficients are transformed into MLSA filter coefficients, and then the coefficients $b(m)$ are written to data. b :

```
frame < data.f | window | mcep -m 12 |\}
mc2b -m 12 > data.b
```


SEE ALSO

msadt, mglsadt, b2mc, meep, mgcep, amcep

NAME
mcep - mel cepstral analysis[10, [12]

SYNOPSIS

$$
\begin{array}{ll}
\text { mcep } & {[-\mathbf{a} A][-\mathbf{m} M][-\mathbf{l} L][-\mathbf{q} Q][-\mathbf{i} I][-\mathbf{j} J][-\mathbf{d} D][-\mathbf{e} e][-\mathbf{E} E][-\mathbf{f} F]} \\
& {[\text { infile }]}
\end{array}
$$

DESCRIPTION

mсер uses mel-cepstral analysis to calculate mel-cepstral coefficients $c_{\alpha}(m)$ from L length framed windowed data from infile (or standard input), sending the result to standard output.

Input and output data are in float format.
In the mel-cepstral analysis, the spectrum of the speech signal is modeled by M-th order mel-cepstral coefficients $c_{\alpha}(m)$ as follows.

$$
H(z)=\exp \sum_{m=0}^{M} c_{\alpha}(m) \tilde{z}^{-m}
$$

The command "mcep" applies a cost function based on the unbiased log spectrum estimation method. The variable \tilde{z}^{-1} can be expressed as the following first order all-pass function

$$
\tilde{z}^{-1}=\frac{z^{-1}-\alpha}{1-\alpha z^{-1}} .
$$

The phase characteristic is given by the variable α. For a sampling rate of $16 \mathrm{kHz}, \alpha$ is set to 0.42 . For a sampling rate $10 \mathrm{kHz}, \alpha$ is set to 0.35 . For a sampling rate $8 \mathrm{kHz}, \alpha$ is set to 0.31 . By making these choices for α, the mel-scale becomes a good approximation to the human sensitivity to the loudness of speech.
The Newton-Raphson method is used to minimize the cost function when evaluating mel-cepstral coefficients.

OPTIONS

$\mathbf{- a}$	A	all-pass constant α	$[0.35]$
$\mathbf{- m}$	M	order of mel cepstrum	$[25]$
$\mathbf{-}$	L	frame length	$[256]$
$\mathbf{- q}$	Q	input data style	$[0]$
		$Q=0 \quad$ windowed data sequence	
		$Q=1 \quad 20 \times \log \|f(w)\|$	
		$Q=2 \quad \ln \|f(w)\|$	
		$Q=3 \quad\|f(w)\|$	
		$Q=4$	$\|f(w)\|^{2}$

Usually, the options below do not need to be assigned.
-i $\quad I \quad$ minimum iteration of Newton-Raphson method
-j $\quad J \quad$ maximum iteration of Newton-Raphson method
-d $\quad D$ end condition of Newton-Raphson
-e $\quad e \quad$ small value added to periodogram
-E $\quad E \quad$ floor in db calculated per frame
-f $\quad F$ minimum value of the determinant of the normal matrix

EXAMPLE

In the example below, speech data is read in float format from data.f and analyzed. Then, mel-cepstral coefficients are written to data.mcep:

```
frame < data.f | window | mcep > data.mcep
frame < data.f | window | fftr -A -H | mcep -q 3 > data.mcep
```

Also, in the following example, the floor value is set as -30 dB per frame by using the -E option.

```
frame < data.f | window | mcep -E -30 > data.mcep
```


NOTICE

- Value of e must be $e \geq 0$.
- Value of E must be $E<0$.

SEE ALSO

uels, [cep, mgcep, mlsadt

NAME
merge - data merge

SYNOPSIS

merge $[-\mathbf{s} S]\left[-\mathbf{l} L_{1}\right]\left[-\mathbf{n} N_{1}\right]\left[-\mathbf{L} L_{2}\right]\left[-\mathbf{N} N_{2}\right]$
[-0][+type]file1[infile]

DESCRIPTION

merge merges, on a frame-by-frame basis, data from filel into the data from infile (or standard input), sending the result to standard output, as described below.

Insert mode

Overwrite mode

OPTIONS

$\mathbf{- s}$	S	insert point	$[0]$
$\mathbf{-}$	L_{1}	frame length of input data	$[25]$
$\mathbf{- n}$	N_{1}	order of input data	$\left[L_{1}-1\right]$
$\mathbf{- \mathbf { L }}$	L_{2}	frame length of insert data	$[10]$
$\mathbf{- N}$	N_{2}	order of insert data	$\left[L_{2}-1\right]$

$\mathbf{- 0}$	overwrite mode
$+t$	input data format

[FALSE]
$+t$ input data format
[f]

c	char (1 byte)	C	unsigned char (1 byte)
s	short (2 bytes)	S	unsigned short (2 bytes)
i3	int $(3$ bytes $)$	I3	unsigned int (3 bytes)
i	int (4 bytes)	I	unsigned int (4 bytes)
1	long (4 bytes)	L	unsigned long (4 bytes)
le	long long (8 bytes $)$	LE	unsigned long long (8 bytes)
f	float (4 bytes)	d	double (8 bytes)

EXAMPLE

The following example inserts blocks of 2 samples from data.f2 in short format into data.fl, also in short format. The frame length of the file data.fl is 3 , and the blocks from data.f2 will be inserted from the 3rd sample of every frame. The result is written to data.merge.

```
merge -s 2 -l 3 -L 2 +s data.f2 < data.f1 > data.merge
```

For example, if the data.fl file is given by

$$
1,1,1,2,2,2, \ldots
$$

, and the data. 22 file is given by

$$
2,3,5,6, \ldots
$$

then the output data.merge will be

$$
1,1,2,3,1,2,2,5,6,2, \ldots
$$

The next example overwrites blocks of 2 samples from data.f2 in long format into data.f1, also in long format, the frame length of the file data.fl is 4, and the blocks from data. 22 will be inserted from the 2 nd sample of every frame. The result is data.merge.

$$
\text { merge -s } 2 \text {-1 } 4 \text {-L } 2 \text { +l -o data.f2 < data.f1 > data.merge }
$$

For example, if the data.fl file is given by

$$
1,1,1,1,2,2,2,2, \ldots
$$

, and the data. $f 2$ file is given by

$$
3,4,5,6, \ldots
$$

then the output data.merge will be

$$
1,3,4,1,2,5,6,2, \ldots
$$

SEE ALSO

NAME
mfcc - mel-frequency cepstral analysis

SYNOPSIS

$$
\begin{gathered}
\operatorname{mfcc} \quad[-\mathbf{a} A][-\mathbf{e} E]\left[-\mathbf{l} L_{1}\right]\left[-\mathbf{L} L_{2}\right][-\mathbf{s} \text { or }-\mathbf{f} F][-\mathbf{m} M] \\
{[-\mathbf{n} N][-\mathbf{s} S][-\mathbf{w} W][-\mathbf{d}][-\mathbf{E}][-\mathbf{0}][\text { infile }]}
\end{gathered}
$$

DESCRIPTION

$m f c c$ uses mel-frequency cepstral analysis to calculate mel-frequency cepstrum from $L_{1}-$ length framed data from infile (or standard input), sending the result to standard output.Since $m f c c$ can apply a window function to input data in the function, it is not necessary to use windowed data as input. The input time domain sequence of length L_{1} is of the form:

$$
x(0), x(1), \ldots, x\left(L_{1}-1\right)
$$

Also, note that the input and output data are in float format, and that the output data cannot be used for speech synthesis through the MLSA filter.

OPTIONS

$\mathbf{- a}$	A	preemphasise coefficient	$[0.97]$
$\mathbf{- c}$	C	liftering coefficient	$[22]$
$\mathbf{- e}$	E	flooring value for calculating $\log (x)$ in filterbank analysis	$[1.0]$
		if $x<E$ then return $x=E$	$[256]$
$\mathbf{-}$	L_{1}	frame length of input	$\left[2^{n}\right]$
$\mathbf{- \mathbf { L }}$	L_{2}	frame length for fft. default value 2^{n} satisfies $L_{1}<2^{n}$	$[12]$
$\mathbf{- m}$	M	order of mfcc	$[20]$
$\mathbf{- \mathbf { n }}$	N	order of channel for mel-filter bank	$[16.0]$
$\mathbf{- s}$	S	sampling frequency (kHz)	$[0]$

0 Hamming
1 Do not use a window function
-d use dft (without using fft) for dct
[FALSE]
-E output energy
[FALSE]
-0 output 0 'th static coefficient
[FALSE]
if the -E or -0 option is given, energy E or 0 'th static coefficient $C 0$ is outputted as follows.

$$
m c(0), m c(1), \ldots, m c(m-1), E(C 0)
$$

Also, if both -E and -0 option are given, the output is as follows.

$$
m c(0), m c(1), \ldots, m c(m-1), C 0, E
$$

EXAMPLE

In the example below, speech data in float format is read from data.f. Here, we specify the frame length, frame shift and sampling frequency as $40 \mathrm{~ms}, 10 \mathrm{~ms}$ and 16 kHz , respectivelly. The 12 order mel-frequency cepstral coefficients, together with the energy component, are outputted to data.mfc.

```
frame -l 640 -p 160 data.f |\
mfcc -l 640 -m 12 -s 16 -E > data.mfc
```

Also, in case we want to calculate the coefficients the same way as in HTK, following the conditions:

```
SOURCEFORMAT = NOHEAD
SOURCEKIND = WAVEFORM
SOURCERATE = 625 # Sampling rate (1 / 16000 * 10^7)
TARGETKIND = MFCC_D_A_E
TARGETRATE = 100000 # Frame shift (ns)
WINDOWSIZE = 400000 # Frame length (ns)
DELTAWINDOW = 1 # Delta widndow size
ACCWINDOW = 1 # Accelaration widndow size
ENORMALISE = FALSE
```

We have to use the following command in SPTK. Below, because of the difference of the calcuration method of regression coefficients between SPTK and HTK, differencial coefficients are specified directly using -d option in delta command.

```
frame -l 640 -p 160 data.f |\
mfcc -l 640 -m 12 -s 16 -E > data.mfc
delta -m 12 -d -0.5 0 0.5 |\
-d 0.25 0 -0.5 0 0.25 data.mfc > data.mfc.diff
```

Here, because of the difference in the calculation method of regression coefficients between SPTK and HTK, differencial coefficients are specified directly using the -d option in delta dommand. The correspondence between the option of SPTK's command option and the HTK's configuration for extracting mel-frequency cepstrum is shown in Table []. Please, refer to the HTKBook for more information on extracting mel-frequency cepstrum with HTK.

SEE ALSO

Table 2: Configuration for extracting MFCC

Settings	SPTK	HTK
pre-emphasis coefficient	-a (at $m f c c$ command)	PREEMCOEF
liftering coefficient	-c (at $m f c c$ command)	CEPLIFTER
small value for calculating $\log ($)	-e (at $m f c c$ command)	N/A
sampling rate	-s (at $m f c c$ command)	SOURCERATE
frame shift	-p (at $f r a m e$ command)	TARGETRATE
frame length of input	-1 (at $f r a m e ~ c o m m a n d) ~$	WINDOWSIZE
-l (at $m f c c$ command)		
frame length for fft	-L (at $m f c c$ command)	N/A
order of cepstrum	-m (at $m f c c$ command)	NUMCEPS
order of channel for mel-filter bank	-n (at $m f c c$ command)	NUMCHANS
use hamming window	-w (at $m f c c$ command)	USEHAMMING
use dft	-d (at $m f c c$ command)	
output energy	-E (at $m f c c$ command)	TARGETKIND
output 0'th static coefficient	-0 (at $m f c c$ command)	TARGETKIND
delta window size	-r (at $d e l t a$ command)	DELTAWINDOW
acceleration window size	-r (at delta command)	ACCWINDOW
Normalize log energy	N/A	ENORMALISE

NAME

mgc2mgc - frequency and generalized cepstral transformation

SYNOPSIS

$$
\begin{aligned}
& \mathbf{m g c} 2 m g c {\left[-\mathbf{m} M_{1}\right]\left[-\mathbf{a} A_{1}\right]\left[-\mathbf{g} G_{1}\right]\left[-\mathbf{c} C_{1}\right][-\mathbf{n}][-\mathbf{u}] } \\
& {\left[-\mathbf{M} M_{2}\right]\left[-\mathbf{A} A_{2}\right]\left[-\mathbf{G} G_{2}\right]\left[-\mathbf{C} C_{2}\right][-\mathbf{N}][-\mathbf{U}][\text { infile }] }
\end{aligned}
$$

DESCRIPTION

$m g c 2 m g c$ transforms mel-generalized cepstral coefficients $c_{\alpha_{1}, \gamma_{1}}(0), \ldots, c_{\alpha_{1}, \gamma_{1}}\left(M_{1}\right)$ from infile (or standard input) into a different set of mel-generalized cepstral coefficients $c_{\alpha_{2}, \gamma_{2}}(0), \ldots, c_{\alpha_{2}, \gamma_{2}}\left(M_{2}\right)$ sending the result to standard output.
α characterizes the frequency-warping transform, while γ characterizes the generalized log magnitude transform.

Input and output data are in float format.
First, a frequency transformation $\left(\alpha_{1} \rightarrow \alpha_{2}\right)$ is undertaken in the input mel-generalized cepstral coefficients $c_{\alpha_{1}, \gamma_{1}}(m)$, and $c_{\alpha_{2}, \gamma_{1}}(m)$ is calculated as follows.

$$
\begin{aligned}
\alpha & =\left(\alpha_{2}-\alpha_{1}\right) /\left(1-\alpha_{1} \alpha_{2}\right) \\
c_{\alpha_{2}, \gamma_{1}}^{(i)}(m) & = \begin{cases}c_{\alpha_{1}, \gamma_{1}}(-i)+\alpha c_{\alpha_{2}}^{(i-1)}(0), & m=0 \\
\left(1-\alpha^{2}\right) c_{\alpha_{2}, \gamma_{1}}^{(i-1)}(0)+\alpha c_{\alpha_{2}, \gamma_{1}}^{(i-1)}(1), & m=1 \\
c_{\alpha_{2}, \gamma_{1}}^{(i-1)}(m-1)+\alpha\left(c_{\alpha_{2}, \gamma_{1}}^{(i-1}(m)-c_{\alpha_{2}, \gamma_{1}}^{(i)}(m-1)\right), & m=2, \ldots, M_{2} \\
i=-M_{1}, \ldots,-1,0\end{cases}
\end{aligned}
$$

Then the gain is normalized and $c_{\alpha_{2}, \gamma_{1}}^{\prime}(m)$ is evaluated.

$$
\begin{aligned}
K_{\alpha_{2}} & =s_{\gamma_{1}}^{-1}\left(c_{\alpha_{2}, \gamma_{1}}^{(0)}(0)\right), \\
c_{\alpha_{2}, \gamma_{1}}^{\prime}(m) & =c_{\alpha_{2}, \gamma_{1}}^{(0)}(m) /\left(1+\gamma_{1} c_{\alpha_{2}, \gamma_{1}}^{(0)}(0)\right), \quad m=1,2, \ldots, M_{2}
\end{aligned}
$$

Afterwards, $c_{\alpha_{2}, \gamma_{1}}^{\prime}(m)$ is transformed into $c_{\alpha_{2}, \gamma_{2}}^{\prime}(m)$ through a generalized log transformation ($\gamma_{1} \rightarrow \gamma_{2}$).

$$
\begin{gathered}
c_{\alpha_{2}, \gamma_{2}}^{\prime}(m)=c_{\alpha_{2}, \gamma_{1}}^{\prime}(m)+\sum_{k=1}^{m-1} \frac{k}{m}\left\{\gamma_{2} c_{\alpha_{2}, \gamma_{1}}(k) c_{\alpha_{2}, \gamma_{2}}^{\prime}(m-k)-\gamma_{1} c_{\alpha_{2}, \gamma_{2}}(k) c_{\alpha_{2}, \gamma_{1}}^{\prime}(m-k)\right\}, \\
m=1,2, \ldots, M_{2}
\end{gathered}
$$

Finally, the gain is inversely normalized and $c_{\alpha_{2}, \gamma_{2}}(m)$ is calculated.

$$
\begin{aligned}
& c_{\alpha_{2}, \gamma_{2}}(0) \\
& c_{\alpha_{2}, \gamma_{2}}(m)=s_{\gamma_{2}}\left(K_{\alpha_{2}, \gamma_{2}}^{\prime}\right) \\
&(m)\left(1+\gamma_{2} c_{\alpha_{2}, \gamma_{2}}(0)\right), \quad m=1,2, \ldots, M_{2}
\end{aligned}
$$

In case we represent input and output with γ, if the coefficients $c_{\alpha, \gamma}(m)$ are not normalized, then the following representation is assumed

$$
1+\gamma c_{\alpha, \gamma}(0), \gamma c_{\alpha, \gamma}(1), \ldots, \gamma c_{\alpha, \gamma}(M)
$$

if they are normalized, then the following representation is assumed

$$
K_{\alpha}, \gamma c_{\alpha, \gamma}^{\prime}(1), \ldots, \gamma c_{\alpha, \gamma}^{\prime}(M)
$$

OPTIONS

-m	M_{1}	order of mel-generalized cepstrum (input)	[25]
-a	A_{1}	alpha of mel-generalized cepstrum (input)	[0]
-g	G_{1}	gamma of mel-generalized cepstrum (input)	[0]
-c	C_{1}	$\gamma_{1}=G_{1}$ gamma of mel-generalized cepstrum (input)	
		$\begin{aligned} & \gamma_{1}=-1 /(\mathrm{int}) C_{1} \\ & C_{1} \text { must be } C_{1} \geq 1 \end{aligned}$	
-n		regard input as normalized mel-generalized cepstrum	[FALSE]
-u		regard input as multiplied by gamma	[FALSE]
-M	M_{2}	order of mel-generalized cepstrum (output)	[25]
-A	A_{2}	alpha of mel-generalized cepstrum (output)	[0]
-G	G_{2}	gamma of mel-generalized cepstrum (output)	[1]
-C	C_{2}	$\gamma_{2}=G_{2}$ gamma of mel-generalized cepstrum (output)	
		$\gamma_{2}=-1 /(\mathrm{int}) G_{2}$	
		C_{2} must be $C_{2} \geq 1$	
-N		regard output as normalized mel-generalized cepstrum	[FALSE]
-U		regard input as multiplied by gamma	[FALSE]

EXAMPLE

In the example below, 12-th order LPC coefficients are read in float format from data.lpc, and 30-th order mel-cepstral coefficients are calculated and written to data.mcep:

$$
\begin{array}{r}
\text { mgc2mgc -m } 12 \text {-a } 0-\mathrm{g}-1-\mathrm{M} 30-\mathrm{A} 0.31-\mathrm{G} 0 \\
\\
<\text { data.lpc }>\text { data.mcep }
\end{array}
$$

NOTICE

Value of C_{1} and C_{2} must be $C_{1} \geq 1, C_{2} \geq 1$.

SEE ALSO

uels, gcep, mcep, mgcep, gc2gc, freqt, [pc2d

NAME
mgc2mgclsp - transform MGC to MGC-LSP

SYNOPSIS

mgc2mgclsp $\quad[-\mathbf{a} A][-\mathbf{g} G][-\mathbf{m} M][-\mathbf{o} O][-\mathbf{s} S][-\mathbf{k}][-\mathbf{L}][$ infile $]$

DESCRIPTION

$m g c 2 m g c l s p$ transforms mel-generalized cepstral coefficients $c_{\alpha, \gamma}(0), \ldots, c_{\alpha, \gamma}(M)$ from infile (or standard input) into line spectral pair coefficients (MGC-LSPs) $K, l(1), \ldots, l(M)$ sending the result to standard output.
α characterizes the frequency-warping transform, while γ characterizes the generalized \log magnitude transform and K is the gain.
$m g c 2 m g c l s p$ does not check for stability of the MGC-LSPs. One should use the command lspcheck to check the stability of the MGC-LSPs.

OPTIONS

-a	A	alpha of mel-generalized cepstrum	[0.35]
-g	G_{1}	gamma of mel-generalized cepstrum	[-1]
-c	C_{1}	$\gamma=G$	
		$\gamma=-1 /(\mathrm{int}) C$	
-m	M	C must be $C \geq 1$	[25]
-0	O	output format	[0]
		0 normalized frequency ($0 \ldots \pi$)	
		1 normalized frequency ($0 \ldots 0.5$)	
		2 frequency (kHz)	
		3 frequency (Hz)	
-s	S	sampling frequency (kHz)	[10]
-k		do not output gain	[FALSE]
-L		output log gain instead of linear gain	[FALSE]

Usually, the options below do not need to be assigned.
-n $\quad N \quad$ split number of unit circle
-p $\quad P \quad$ maximum number of interpolation
-d $\quad D \quad$ end condition of interpolation

EXAMPLE

In the following example, speech data is read in float format from data.f, analyzed with $\alpha=0.35, \gamma=-1$ and the MGC-LSP coefficients are evaluated and written to data.mgclsp:

```
frame < data.f | window | mgcep -a 0.35 -g -1 |\}
mgc2mgclsp -a \(0.35-\mathrm{g}-1>\) data.mgclsp
```

Also, the stability of the MGC-LSPs can be checked by using the following:

```
frame < data.f | window | mgcep -a 0.35 -g -1 |\
mgc2mgclsp -a 0.35 -g -1 | lspcheck -r 0.01 > data.mgclsp
```


SEE ALSO

|pc, \|sp2lpc, \|spcheck, mgc2mgc, mgcep

NAME

mgc2sp - transform mel-generalized cepstrum to spectrum

SYNOPSIS

mgc2sp $\quad[-\mathbf{a} A][-\mathbf{g} G][-\mathbf{c} C][-\mathbf{m} M][-\mathbf{n}][-\mathbf{u}][-\mathbf{l} L][-\mathbf{p}]$
[-o O][infile]

DESCRIPTION

$m g c 2 s p$ calculates the log magnitude spectrum from mel-generalized cepstral coefficients $c_{\alpha, \gamma}(m)$ from infile (or standard input), sending the result to standard output.

Input and output data are in float format.
The mel-generalized cepstral coefficients $c_{\alpha, \gamma}(m)$ are transformed into cepstral coefficients (refer to mgc 2 mgc) and then the \log magnitude spectrum is calculated (refer to speq).

When the input data is normalized by the gain, it can be expressed as follows.

$$
\begin{aligned}
K_{\alpha} & =s_{\gamma}^{-1}\left(c_{\alpha, \gamma}^{(0)}(0)\right), \\
c_{\alpha, \gamma}^{\prime}(m) & =c_{\alpha, \gamma}^{(0)}(m) /\left(1+\gamma c_{\alpha, \gamma}^{(0)}(0)\right), \quad m=1,2, \ldots, M
\end{aligned}
$$

Supposing the input data is represented by γ for non-normalized coefficients $c_{\alpha, \gamma}(m)$, the following representation is assumed

$$
1+\gamma c_{\alpha, \gamma}(0), \gamma c_{\alpha, \gamma}(1), \ldots, \gamma c_{\alpha, \gamma}(M)
$$

and the following representation is assumed for normalized coefficients

$$
K_{\alpha}, \gamma c_{\alpha, \gamma}^{\prime}(1), \ldots, \gamma c_{\alpha, \gamma}^{\prime}(M)
$$

OPTIONS

$\mathbf{- a}$	A	alpha α	$[0]$
$\mathbf{- g}$	G	power parameter γ of mel-generalized cepstrum	$[0]$
		$\gamma=G$	
$\mathbf{- c}$	C	power parameter γ of mel-generalized cepstrum	
		$\gamma=-1 /($ int $) C$	
$\mathbf{- m}$	M	order of mel-generalized cepstrum $\mathbf{- n}$	
regard input as normalized cepstrum	[25]		
$\mathbf{- u}$		regard input as multiplied by γ	[FALSE]
$\mathbf{- l}$	L	FFT length	[FALSE]

-p		output phase		
-o	O	output format		[FALSE]
:---				

if the -p option is assigned, scale of output spectrum can be assigned.

$$
\begin{array}{ll}
O=0 & 20 \times \log |H(z)| \\
O=1 & \ln |H(z)| \\
O=2 & |H(z)| \\
O=3 & |H(z)|^{2}
\end{array}
$$

if the -p option is not assigned, unit of output phase can be assigned.

$$
\begin{array}{lll}
O=0 & \arg |H(z)| \div \pi & {[\pi \mathrm{rad} .]} \\
O=1 & \arg |H(z)| & {[\mathrm{rad} .]} \\
O=2 & \arg |H(z)| \times 180 \div \pi & {[\text { deg. }]}
\end{array}
$$

EXAMPLE

In the following example, mel-generalized cepstral coefficients in float format are read from data.mgcep ($M=12, \alpha=0.35, \gamma=-0.5$) and the log magnitude spectrum is evaluated and plotted:

```
mgc2sp -m 12 -a 0.35 -c 2 < data.mgcep | glogsp | xgr
```


NOTICE

The -o option number (the -p option is assigned) is different from the -q option of mcep and mgcep.

SEE ALSO

C2sp, mgc2mgc, gc2gc, freqt, gnorm, |lpc2c

NAME

mgcep - mel-generalized cepstral analysis[133, [14]

SYNOPSIS

mgcep $[-\mathbf{a} A][-\mathbf{g} G][-\mathbf{c} C][-\mathbf{m} M][-\mathbf{l} L][-\mathbf{q} Q][-\mathbf{o} O]$
[-i $I][-\mathbf{j} J][-\mathbf{d} D][-\mathbf{p} P][-\mathbf{e} e][-\mathbf{E} E][-\mathbf{f} F][$ infile $]$

DESCRIPTION

mgcep uses mel-generalized cepstral analysis to calculate mel-generalized cepstral coefficients from L-length framed windowed input data from infile (or standard input), sending the result to standard output. There are several different output formats, controlled by the -o option.
Considering an input signal of length L, the time sequence is presented by

$$
x(0), x(1), \ldots, x(L-1)
$$

Input and output data are in float format.
In the mel-generalized cepstral analysis, the spectrum of the speech signal is modeled by M-th order mel-generalized cepstral coefficients $c_{\alpha, \gamma}(m)$ as expressed below:

$$
\begin{aligned}
H(z) & =s_{\gamma}^{-1}\left(\sum_{m=0}^{M} c_{\alpha, \gamma}(m) z^{-m}\right) \\
& = \begin{cases}\left(1+\gamma \sum_{m=1}^{M} c_{\alpha, \gamma}(m) \tilde{z}^{-m}\right)^{1 / \gamma}, & -1 \leq \gamma<0 \\
\exp \sum_{m=1}^{M} c_{\alpha, \gamma}(m) \tilde{z}^{-m}, & \gamma=0\end{cases}
\end{aligned}
$$

For this command "mgcep", a cost function based on the unbiased estimation log spectrum method is applied. The variable \tilde{z}^{-1} can be expressed as the following first order all-pass function

$$
\tilde{z}^{-1}=\frac{z^{-1}-\alpha}{1-\alpha z^{-1}}
$$

The phase characteristic is represented by the variable α. For a sampling rate $10 \mathrm{kHz}, \alpha$ is made equal to 0.35 . For a sampling rate $8 \mathrm{kHz}, \alpha$ is made equal to 0.31 . By setting α to these values, the mel-scale becomes a good approximation to the human sensitivity to the loudness of speech.
The Newton-Raphson method is used to minimize the cost function when evaluating mel-cepstral coefficients.
The mel-generalized cepstral analysis includes several other methods to analyze speech, depending on the values of α and γ (refer to figure (I).

Figure 1: mel-generalized cepstral analysis and other method relations

OPTIONS

$$
\begin{array}{llll}
\mathbf{- a} & A & \text { alpha } \alpha & {[0.35]} \\
\mathbf{- g} & G & \text { power parameter of generalized cepstrum } \gamma & \\
& & \gamma=G \\
\mathbf{- c} & C & \text { power parameter of generalized cepstrum } \gamma \\
& & \gamma=-1 /(\text { int }) C \\
& C \text { must be } C \geq 1 \\
\mathbf{- m} & M & \text { order of mel-generalized cepstrum } \\
\mathbf{- \mathbf { l }} & L & \text { frame length power of } 2 \\
\mathbf{- q} & Q & \text { input data style } \\
& & Q=0 \quad \text { windowed data sequence } \\
& & Q=1 \quad 20 \times \log |f(w)| \\
& & Q=2 \quad \ln |f(w)| \\
& & \\
& & {[25]} \\
& & |f(w)| \\
& & |f(w)|^{2}
\end{array}
$$

-o O output format
[0]

$$
\begin{array}{ll}
O=0 & c_{\alpha, \gamma}(0), c_{\alpha, \gamma}(1), \ldots, c_{\alpha, \gamma}(M) \\
O=1 & b_{\gamma}(0), b_{\gamma}(1), \ldots, b_{\gamma}(M) \\
O=2 & K_{\alpha}, c_{\alpha, \gamma}^{\prime}(1), \ldots, c_{\alpha, \gamma}^{\prime}(M) \\
O=3 & K, b_{\gamma}^{\prime}(1), \ldots, b_{\gamma}^{\prime}(M) \\
O=4 & K_{\alpha}, \gamma c_{\alpha, \gamma}^{\prime}(1), \ldots, \gamma c_{\alpha, \gamma}^{\prime}(M) \\
O=5 & K, \gamma b_{\gamma}^{\prime}(1), \ldots, \gamma b_{\gamma}^{\prime}(M)
\end{array}
$$

Usually, the options below do not need to be assigned.
-i $\quad I \quad$ minimum iteration of Newton-Raphson method
-j $\quad J \quad$ maximum iteration of Newton-Raphson method
-d $\quad D \quad$ end condition of Newton-Raphson method
-p $\quad P \quad$ order of recursions
-e $\quad e \quad$ small value added to periodogram
-E $\quad E \quad$ floor in db calculated per frame
-f $\quad F$ mimimum value of the determinant of the normal matrix

EXAMPLE

In the following example, speech data is read in float format from data.f and analyzed with $\gamma=0, \alpha=0$ (which correspond to UELS method for \log spectrum estimation) and the resulting cepstral coefficients are written data.cep:

```
frame < data.f | window | mgcep > data.cep
```

In a similar way, mel-cepstral coefficients can be obtained by

$$
\text { frame < data.f | window | mgcep -a } 0.35 \text { > data.mcep }
$$

And linear prediction coefficients can be obtained by

$$
\text { frame < data.f | window | mgcep -g -1 -o } 5 \text { > data.lpc }
$$

In this case, the linear prediction coefficients are represented as

$$
K, a(1), a(2), \ldots, a(M)
$$

In the following example, speech data in float format is read from data.f, and analyzed with $\gamma=0, \alpha=0$ (which correspond to UELS method for log spectrum estimation). The resulting cepstral coefficients are written to data.cep:

```
frame < data.f | window | \
fftr -A -H | mgcep -q 3 > data.cep
```

Also, in the following example, the floor value is set as -30 dB per frame by using the -E option.

```
frame < data.f | window | mgcep -E -30 > data.mcep
```


NOTICE

- Value of C must be $C \geq 1$.
- value of e must be $e \geq 0$.
- value of E must be $E<0$.

SEE ALSO

uels, gcep, mcep, freqt, gc2gc, mgc2mgc, gnorm, mglsadt

NAME

mgclsp2sp - transform MGC-LSP to spectrum

SYNOPSIS

mgclsp2sp $\quad[-\mathbf{a} A][-\mathbf{g} G][-\mathbf{m} M][-\mathbf{l} L][-\mathbf{q} Q][-\mathbf{s} S][-\mathbf{o} O]$ [-k][-L][infile]

DESCRIPTION

$m g c l s p 2 s p$ calculates the spectrum from the line spectral pair coefficients (MGC-LSPs). The MGC-LSPs is input from infile (or standard input), and the result sends to standard output. Input and output data are in float format.
The MGC-LSPs input format is

$$
[\tilde{K}], l(1), \ldots, l(M)
$$

The spectrum can be obtained by

$$
\left|H\left(\mathrm{e}^{-j \omega}\right)\right|=\frac{\tilde{K}}{\left|A_{p}\left(\mathrm{e}^{-j \omega}\right)\right|} .
$$

When the generalized logarithmic function is defined by

$$
s_{\gamma}^{-1}(\hat{\omega})= \begin{cases}(1+\gamma \hat{\omega})^{1 / \gamma} & 0<|\gamma| \leq 1 \\ \exp \hat{\omega} & \gamma=0\end{cases}
$$

When the order of MGC-LSP is even, $\left|A_{p}\left(\mathrm{e}^{-j \omega}\right)\right|$ is given as

$$
\left|A_{p}\left(\mathrm{e}^{-j \tilde{\omega}}\right)\right|=\left\{2^{M}\left\{\cos ^{2} \frac{\tilde{\omega}}{2} \prod_{i=1,3, \cdots, M-1}(\cos \tilde{\omega}-\cos l(i))^{2}+\sin ^{2} \frac{\tilde{\omega}}{2} \prod_{i=2,4, \cdots, M}(\cos \tilde{\omega}-\cos l(i))^{2}\right\}\right\}^{-\frac{1}{2 \gamma}}
$$

When the order of MGC-LSP is odd, $\left|A_{p}\left(\mathrm{e}^{-j \omega}\right)\right|$ is given as

$$
\left|A_{p}\left(\mathrm{e}^{-j \tilde{\omega}}\right)\right|=\left\{2^{M-1}\left\{\prod_{i=1,3, \cdots, M}(\cos \tilde{\omega}-\cos l(i))^{2}+\sin ^{2} \tilde{\omega} \prod_{i=2,4, \cdots, M-1}(\cos \tilde{\omega}-\cos l(i))^{2}\right\}\right\}^{-\frac{1}{2 \gamma}},
$$

where $\tilde{\omega}$ is obtained by

$$
\tilde{\omega}=\omega+2 \tan ^{-1}(\alpha \sin \omega /(1-\alpha \cos \omega))
$$

and ω is angular frequency.
Also, $m g c l s p 2 s p$ does not check the stability of the MGC-LSPs. It is necessary to use the lspcheck command for checking the stability of the input MGC-LSPs .

OPTIONS

-a	A	alpha of mel-generalized cepstrum	[0.35]
-g	G_{1}	gamma of mel-generalized cepstrum	[-1]
-c	C_{1}	$\begin{aligned} & \gamma=G \\ & \text { gamma of mel-generalized cepstrum (input) } \end{aligned}$	
		$\begin{aligned} & \gamma=-1 /(\text { int }) C \\ & C \text { must be } C \geq 1 \end{aligned}$	
-m	M	order of mel-generalized cepstrum	[25]
-s	S	sampling frequency	[10.0]
-l	L	frame length	[256]
-k		input gain	[FALSE]
-L		regard input log gain as linear gain	[FALSE]
-q	Q	input format	[0]
		0 normalized frequency ($0 \sim \pi$)	
		1 normalized frequency ($0 \sim 0.5$)	
		2 frequency (kHz)	
		3 frequency (Hz)	
-0	O	output format	[0]
		$0 \quad(20 * \log \|H(z)\|)$	
		$1 \quad(\ln \|H(z)\|)$	
		$2(\|H(z)\|)$	
		$3\left(\|H(z)\|^{2}\right)$	

EXAMPLE

In the following example, MGC-LSPs is read in float format from data.mgclsp, that is analyzed with $\alpha=0.35, \gamma=-1$. The spectrum are calculated and written to data.sp:

```
mgclsp2sp -a 0.35 -g -1 data.mgclsp > data.sp
```


NOTICE

Value of γ must be $-1 \leq \gamma<0$.

SEE ALSO

|sp2lpc, |spcheck, mgc2mgclsp

NAME
mgclsp2mgc - transform MGC-LSP to MGC

SYNOPSIS

mgclsp2mgc $\quad[-\mathbf{a} A][-\mathbf{g} G][-\mathbf{m} M][-\mathbf{q} Q][-\mathbf{s} S][-\mathbf{L}][$ infile $]$

DESCRIPTION

$m g c l s p 2 m g c$ transforms M-th order line spectral pair coefficients (MGC-LSPs)

$$
K, l(1), \ldots, l(M)
$$

read from infile (or standard input) into mel-generalized cepstrum coefficients

$$
c_{\alpha, \gamma}(0), \ldots, c_{\alpha, \gamma}(M), a
$$

sending the result to standard output.
α characterizes the frequency-warping transform, while γ characterizes the generalized log magnitude transform and K represents the gain.

Also, mgclsp2mgc does not check the stability of the MGC-LSPs. If it is necessary to use the lspcheck command for checking the stability of the input MGC-LSPs and then generating the mel-generalized cepstrum coefficients.

OPTIONS

-a	A	alpha of mel-generalized cepstrum	[0.35]
-9	G_{1}	gamma of mel-generalized cepstrum	[-1]
-c	C_{1}	$\begin{aligned} & \gamma=G \\ & \text { gamma of mel-generalized cepstrum (input) } \end{aligned}$	
		$\gamma=-1 /(\mathrm{int}) \mathrm{C}$	
m	M	$C \text { must be } C \geq 1$	
-q	Q	input format	[0]
		0 normalized frequency ($0 \ldots \pi$)	
		1 normalized frequency ($0 \ldots 0.5$)	
		2 frequency (kHz)	
		3 frequency (Hz)	
-S	S	sampling frequency (kHz)	[10]
-L		regard input as log gain and output linear gain	[FALSE]

EXAMPLE

In the following example, $m g c l s p 2 m g c$ is read in float format from data.mgclsp, and analyzed with $\alpha=0.35, \gamma=-1$. The mel-generalized cepstrum coefficients are evaluated and written to data.mgc:
mgclsp2mgc -a $0.35-\mathrm{g}-1$ data.mgclsp $>$ data.mgc
Also, the stability of the MGC-LSPs can be checked by using the following command:

$$
\begin{aligned}
& \text { lspcheck -r } 0.01 \text { data.mgclsp | } \\
& \text { mgclsp2mgc -a } 0.35-\mathrm{g}-1>\text { data.mgc }
\end{aligned}
$$

SEE ALSO

NAME

mglsadf - MGLSA digital filter for speech synthesis[21, 22]

SYNOPSIS

mglsadf $[-\mathbf{m} M][-\mathbf{a} A][-\mathbf{c} C][-\mathbf{p} P][-\mathbf{i} I][-\mathbf{v}][-\mathbf{t}][-\mathbf{k}][-\mathbf{P} P a]$ mgcfile [infile]

DESCRIPTION

mglsadf derives a Mel-Generalized Log Spectral Approximation digital filter from melgeneralized cepstral coefficients $c_{\alpha, \gamma}(m)$ in $m g c f i l e$ and uses it to filter an excitation sequence from infile (or standard input) to synthesize speech data, sending the result to standard output.

Input and output data are in float format.
The transfer function $H(z)$ related to the synthesis filter is obtained from the M-th order mel-generalized cepstral coefficients $c_{\alpha, \gamma}(m)$ as expressed below:

$$
\begin{align*}
H(z) & =s_{\gamma}^{-1}\left(\sum_{m=0}^{M} c_{\alpha, \gamma}(m) \tilde{z}^{-m}\right) \tag{1}\\
& = \begin{cases}\left(1+\gamma \sum_{m=0}^{M} c_{\alpha, \gamma}(m) \tilde{z}^{-m}\right)^{1 / \gamma}, & 0<\gamma \leq-1 \\
\exp \sum_{m=0}^{M} c_{\alpha, \gamma}(m) \tilde{z}^{-m}, & \gamma=0\end{cases}
\end{align*}
$$

where

$$
\tilde{z}^{-1}=\frac{z^{-1}-\alpha}{1-\alpha z^{-1}}
$$

The transfer function $H(z)$ can be rewritten as

$$
\begin{align*}
H(z) & =s_{\gamma}^{-1}\left(\sum_{m=0}^{M} b_{\gamma}^{\prime}(m) \Phi_{m}(z)\right) \\
& =K \cdot D(z) \tag{2}
\end{align*}
$$

where

$$
\Phi_{m}(z)= \begin{cases}1, & m=0 \\ \frac{\left(1-\alpha^{2}\right) z^{-1}}{1-\alpha z^{-1}} \tilde{z}^{-(m-1)}, & m \geq 1\end{cases}
$$

and

$$
\begin{aligned}
K & =s_{\gamma}^{-1}\left(b_{\gamma}(0)\right) \\
D(z) & =s_{\gamma}^{-1}\left(\sum_{m=1}^{M} b_{\gamma}(m) \Phi_{m}(z)\right)
\end{aligned}
$$

Figure 1: Realization synthesis filter $D(z)$

Also, the coefficients $b_{\gamma}^{\prime}(m)$ are obtained from the coefficients $c_{\alpha, \gamma}(m)$ by applying normalization (refer to gnorm), and a linear transformation (refer to mc2bl and b2mc). Here we consider only cases where the power parameter is represented by $\gamma=-1 / C$, where C is a natural number. In this case the filter $D(z)$ is constructed as shown in figure (b), where each filter of the C level cascaded filter is constructed as shown in figure (a), and can be expressed as

$$
\frac{1}{B(\tilde{z})}=\frac{1}{1+\gamma \sum_{m=1}^{M} b_{\gamma}^{\prime}(m) \Phi_{m}(z)}
$$

OPTIONS

$\mathbf{- m}$	M	order of mel-generalized cepstrum	$[25]$
$\mathbf{- a}$	A	alpha	$[0.35]$
$\mathbf{- c}$	C	power parameter $\gamma=-1 / C$ of generalized cepstrum	$[1]$
		if $C=0$, the MLSA filter is used	$[100]$
$\mathbf{- p}$	P	frame period	$[1]$
$\mathbf{- i}$	I	interpolation period	[FALSE]
$\mathbf{- \mathbf { v }}$		inverse filter	[FALSE]
$\mathbf{- \mathbf { t }}$		transpose filter	[FALSE]

The option below only works if $C==0$.
-P $\quad P a$ order of the Padé approximation
$P a$ should be 4 or 5

EXAMPLE

In the following example, the excitation is constructed from pitch data read in float format from data.pitch, and passed through an MGLSA filter built from the mel-generalized cepstrum in data.mgcep. The synthesized speech is then written to data.syn:

```
excite < data.pitch | mglsadf data.mgcep > data.syn
```


NOTICE

If $C==0$, MLSA filter is used, $P a$ should be 4 or 5 .

SEE ALSO

Imgcep, poledt, zerodt, Itcdt, Imadt, mlsadt, Ilsadt

NAME
minmax - find minimum and maximum values

SYNOPSIS

$\operatorname{minmax} \quad[-\mathbf{l} L][-\mathbf{n} N][-\mathbf{b} B][-\mathbf{o} O][-\mathbf{d}][$ infile $]$

DESCRIPTION

minmax determines the B (default 1) minimum and maximum values, on a frame-byframe basis, of the data from infile (or standard input), sending the result to standard output. If the frame length L is 1 , each input number is considered to be both the minimum and maximum value for its length- 1 frame.

The input format is float by default. If the -d option is not given, the output format will also be float, consisting of the minimum and maximum values. If the -d option is given, the output format will be ASCII, showing the positions within the frame where the minimum and maximum values occurred, as follows:
value : position $_{0}$, position $_{1}, \ldots$
Also, when specifying -00 , -o 1 , and -o 2 , minmax output minimum and maximum values, only minimum values, and only maximum values, respectively.

OPTIONS

-l $\quad L \quad$ length of vector
-n $\quad N$ order of vector
-b $\quad B$ find n-best values
-0 O output format

$$
\begin{array}{ll}
O=0 & \text { minimum and maximum } \\
O=1 & \text { minimum } \\
O=2 & \text { maximum }
\end{array}
$$

-d output data number
[FALSE]

EXAMPLE

If, for example, the input data in data.f in float format is given as

$$
1,1,2,3,4,5,6,7,8,9,9,10
$$

then the output of the following command

$$
\operatorname{minmax} \text { data.f }-16>\text { data.m }
$$

is written to data.m as

$$
1,5,6,10
$$

Also, if the following command is applied

$$
\text { minmax -n } 2 \text {-d data.f }
$$

then the result will be
1:0
2:2
3:0
5:2
6:0
8:2
9:0,1
10:2

NAME

mlpg - obtains parameter sequence from PDF sequence[23]

SYNOPSIS

$$
\begin{gathered}
\text { mlpg }[-\mathbf{l} L][-\mathbf{m} M]\left[-\mathbf{d}\left(f n \mid d_{0}\left[d_{1} \ldots\right]\right)\right]\left[-\mathbf{r} N_{R} W_{1}\left[W_{2}\right]\right] \\
\quad[-\mathbf{i} I][-\mathbf{s} S][\text { infile }]
\end{gathered}
$$

DESCRIPTION

mlpg calculates the maximum likelihood parameters from the means and diagonal covariances of Gaussian distributions from infile (or standard input), and sends the result to standard output. The input format is

$$
\begin{aligned}
& \ldots, \mu_{t}(0), \ldots, \mu_{t}(M), \mu_{t}^{(1)}(0), \ldots, \mu_{t}^{(1)}(M), \ldots, \mu_{t}^{(N)}(M), \\
& \quad \sigma_{t}^{2}(0), \ldots, \sigma_{t}^{2}(M), \sigma_{t}^{(1)}{ }_{t}^{2}(0), \ldots, \sigma^{(1){ }_{t}^{2}}(M), \ldots, \sigma_{t}^{(N)}{ }_{t}^{2}(M), \ldots
\end{aligned}
$$

Input and output data are in float format.
The speech parameter vector \boldsymbol{o}_{t} for every frame t is composed of the static feature vector \boldsymbol{c}_{t}, where

$$
\boldsymbol{c}_{t}=\left[c_{t}(0), c_{t}(1), \ldots, c_{t}(M)\right]^{\top}
$$

and the dynamic feature vector $\Delta^{(1)} \boldsymbol{c}_{t}, \ldots, \Delta^{(N)} \boldsymbol{c}_{t}$. Thus, the speech parameter vector can be expressed as:

$$
\boldsymbol{o}_{t}=\left[\boldsymbol{c}_{t}^{\prime}, \Delta^{(1)} \boldsymbol{c}_{t}^{\prime}, \ldots, \Delta^{(N)} \boldsymbol{c}_{t}^{\prime}\right]^{\top}
$$

The dynamic feature vector $\Delta^{(n)} \boldsymbol{c}_{t}$ is obtained from the static feature vector as follows.

$$
\Delta^{(n)} \boldsymbol{c}_{t}=\sum_{\tau=-L^{(n)}}^{L^{(n)}} w^{(n)}(\tau) \boldsymbol{c}_{t+\tau}
$$

where n represents the order of dynamic feature vector. (e.g. $n=2$ for Δ^{2}) The mlpg command reads the probability density functions sequence

$$
\left(\left(\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}\right),\left(\boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{2}\right), \ldots,\left(\boldsymbol{\mu}_{T}, \boldsymbol{\Sigma}_{T}\right)\right),
$$

where

$$
\begin{aligned}
\boldsymbol{\mu}_{t} & =\left[\boldsymbol{\mu}_{t}^{(0)}, \boldsymbol{\mu}_{t}^{(1)}, \ldots, \boldsymbol{\mu}_{t}^{(N)}\right]^{\top} \\
\boldsymbol{\Sigma}_{t} & =\operatorname{diag}\left[\boldsymbol{\Sigma}_{t}^{(0)}, \boldsymbol{\Sigma}_{t}^{(1)}, \ldots, \boldsymbol{\Sigma}_{t}^{(1)}\right]
\end{aligned}
$$

and evaluates the maximum likelihood parameter sequence $\left(\boldsymbol{o}_{1}, \boldsymbol{o}_{2}, \ldots, \boldsymbol{o}_{T}\right)$. The output is the static feature vector sequence $\boldsymbol{c}_{t}=\left(\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \ldots, \boldsymbol{c}_{T}\right)$. In the example above, $\boldsymbol{\mu}^{(0)}, \boldsymbol{\Sigma}^{(0)}$ represent the static feature vector mean and covariance matrix, respectively, and $\boldsymbol{\mu}^{(n)}, \boldsymbol{\Sigma}^{(n)}$ represent the n-th order dynamic feature vector mean and covariance matrix, respectively.

OPTIONS

then zeros are added to the left as follows.

$$
0,0, w(-1), w(0), w(1), w(2), w(3)
$$

Instead of entering the filename $f n$, the coefficients(which compose the file $f n$) can be directly input in the command line. When the order of the dynamic feature vector is higher than one, the sets of coefficients can be input one after the other as shown on the last example below. This option cannot be used with the -r option.
-r $\quad N_{R} W_{1}\left[W_{2}\right] \quad$ This option is used when N_{R}-th order dynamic parameters are used and the weighting coefficients $w^{(n)}(\tau)$ are evaluated by regression. N_{R} can be set to 1 or 2 . The variables W_{1} and W_{2} represent the widths of the first and second order regression coefficients, respectively. The first order regression coefficients for $\Delta \boldsymbol{c}_{t}$ at frame t are evaluated as follows.

$$
\Delta \boldsymbol{c}_{t}=\frac{\sum_{\tau=-W_{1}}^{W_{1}} \tau \boldsymbol{c}_{t+\tau}}{\sum_{\tau=-W_{1}}^{W_{1}} \tau^{2}}
$$

For the second order regression coefficients, $a_{2}=$ $\sum_{\tau=-W_{2}}^{W_{2}} \tau^{4}, a_{1}=\sum_{\tau=-W_{2}}^{W_{2}} \tau^{2}, a_{0}=\sum_{\tau=-W_{2}}^{W_{2}} 1$ and

$$
\Delta^{2} \boldsymbol{c}_{t}=\frac{\sum_{\tau=-W_{2}}^{W_{2}}\left(a_{0} \tau^{2}-a_{1}\right) \boldsymbol{c}_{t+\tau}}{2\left(a_{2} a_{0}-a_{1}^{2}\right)}
$$

This option can not be used with the -d option.
-i $I \quad$ type of input PDFs
$\begin{array}{llc}I=0 & \boldsymbol{\mu}, & \boldsymbol{\Sigma} \\ I=1 & \boldsymbol{\mu}, & \boldsymbol{\Sigma}^{-1} \\ I=2 & \boldsymbol{\mu} \boldsymbol{\Sigma}^{-1}, & \boldsymbol{\Sigma}^{-1}\end{array}$
-s $S \quad$ range of influenced frames

EXAMPLE

In the example below, the number of parameters is 15 , the width of the window for first or second order dynamic feature evaluation is 1 , and the parameter sequence is evaluated from the probability density function:

```
mlpg -m 15 -r 2 1 1 data.pdf > data.par
```

or

```
echo "-0.5 0 0.5" | x2x +af > delta
echo "0.25 -0.5 0.25" | x2x +af > accel
mlpg -m 15 -d delta -d accel data.pdf > data.par
```


NOTICE

- Option -d may be repeated to use multiple delta parameters.
- Options -d and -r should not be defined simultaneously.

NAME

mlsacheck - check stability of MLSA filter

SYNOPSIS

mlsacheck $\quad[-\mathbf{m} M][-\mathbf{a} A][-\mathbf{c} C][-\mathbf{r}][-\mathbf{l} L][-\mathbf{R}][-\mathbf{P} P a][$ infile $]$

DESCRIPTION

mlsacheck tests the stability of the Mel Log Spectral Approximation (MLSA) digital filter of the mel-cepstrum coefficients in infile (or standard input). The result sends to standard output.
Both input and output are in float format.
As described in mlsadt, the transfer function $H(z)$ is expressed as

$$
\begin{aligned}
H(z) & =\exp \sum_{m=0}^{M} b(m) \Phi_{m}(z) \\
& =K \cdot D(z)
\end{aligned}
$$

where

$$
\Phi_{m}(z)= \begin{cases}1, & m=0 \\ \frac{\left(1-\alpha^{2}\right) z^{-1}}{1-\alpha z^{-1}} \tilde{z}^{-(m-1)}, & m \geq 1\end{cases}
$$

and

$$
\begin{aligned}
\tilde{z}^{-1} & =\frac{z^{-1}-\alpha}{1-\alpha z^{-1}} \\
K & =\exp b(0) \\
D(z) & =\exp \sum_{m=1}^{M} b(m) \Phi_{m}(z) .
\end{aligned}
$$

To construct the exponential transfer function $H(z)$, Padé approximation is used to approximate complex exponential function exp w by a following rational function:

$$
\exp w \simeq R_{L}(w)=\frac{1+\sum_{l=1}^{L} A_{L, l} w^{l}}{1+\sum_{l=1}^{L} A_{L, l}(-w)^{l}}
$$

Then $D(z)$ is approximated by

$$
D(z)=\exp (F(z)) \simeq R_{L}(F(z))
$$

where

$$
F(z)=\sum_{m=0}^{M} b(m) \tilde{z}^{-m}
$$

The stability of the MLSA synthesis filter is related to the accuracy of the approximation. When $\left|F\left(e^{j \omega}\right)\right|<r=4.5$ and $L=4$ for $R_{L}(w)$, the log approximation error does not exceed 0.24 dB . The corresponding synthesis filter $R_{L}(F(z)) \simeq \exp (F(z))=D(z)$ is stable when $\left|F\left(e^{j \omega}\right)\right|<r_{\max }=6.2$. Also, the log approximation error does not exceed 0.2735 dB when $r=6.0$ and $L=5$. The corresponding synthesis filter is stable when $r_{\text {max }}=7.65$.

In spite of whether specifying -c option or not, mlsacheck tests the stability and sends an ASCII report of the number of unstable frame to standard error. When specifying -c option, mlsacheck modifies the filter coefficients if unstable frame is found. When specifying -r option, the stable condition can be selected as follows: When '-r 0', mlsacheck keeps the \log approximation not exceeding $0.24 \mathrm{~dB}(P a=4)$ or $0.2735 \mathrm{~dB}(P a=5)$, where $P a$ is the order of Padé approximation. When '-r 1', mlsacheck keeps the MLSA filter stable although the accuracy of log approximation is lost.

The ways of check and modification is specified by the -c option. When the -c option is 1 or 4, MLSA filter coefficients are checked and modified without FFT. This method evaluates stability by summation MLSA filter coefficients.

OPTIONS

-m	M	order of mel-cepstrum	[25]
-a	A	all-pass constant α	[0.35]
-1	L	FFT length	[256]
-	C	stability check and modification of MLSA filter coefficients	[0]
		0 only check	
		1 only check (fast mode)	
		2 check and modification by clipping	
		3 check and modification by scaling	
		4 check and modification (fast mode)	
-r	R	stable condition for MLSA filter	[0]
		0 keep log approximation error not exceeding $0.24 \mathrm{~dB}(P a=4)$ or $0.2735 \mathrm{~dB}(P a=5)$	
		1 keep MLSA filter stable	
-P	$P a$	order of the Pade approximation	[4]
		$P a$ should be 4 or 5	
-R	R	threshold value for modification	[N/A]
		If this option wasn't specified, R is set as follows :	
		when $r=0$ and $P=4 \quad, R=4.5$	
		when $r=1$ and $P=4 \quad, R=6.2$	
		when $r=0$ and $P=5 \quad, R=6.0$	
		when $r=1$ and $P=5 \quad, R=7.65$	

EXAMPLE

In the following example, 39-th order mel-cepstrum coefficients are read from data.mcep in float format, then the stability of MLSA filter is checked, and the results are written to data.mlsachk.

$$
\text { mlsacheck -a } 0.48 \text {-m } 39 \text {-c } 0 \text { data.mcep > data.mlsachk }
$$

Also, in the following example, the stability of MLSA filter of 49-th order mel-cepstrum coefficients read from data.mcep is checked under the condition that frequency warping is 0.55 , Padé order is 5 , and FFT length is 4096 . In this example, the coefficients are modified in unstable frames by -r option.

$$
\begin{aligned}
& \text { mlsacheck -m } 49 \text {-a } 0.55-\mathrm{P} 5-14096 \text {-c } 2 \backslash \\
& \text {-r } 1 \text { data.mcep }>\text { data.mlsachk }
\end{aligned}
$$

NOTICE

$$
P a=4 \text { or } 5 .
$$

SEE ALSO

micep, amcep, poledt, zerodt, \|tcdt, \|madt, glsadt, mglsadt

NAME
mlsadf - MLSA digital filter for speech synthesis[12, 19, 20]

SYNOPSIS

mlsadf $[-\mathbf{m} M][-\mathbf{a} A][-\mathbf{p} P][-\mathbf{i} I][-\mathbf{b}][-\mathbf{P} P a][-\mathbf{v}][-\mathbf{t}][-\mathbf{k}]$ mcfile [infile]

DESCRIPTION

$m l s a d f$ derives a Mel Log Spectral Approximation digital filter from mel-cepstral coefficients $c_{\alpha}(0), c_{\alpha}(1), \ldots, c_{\alpha}(M)$ in $m c f i l e$ and uses it to filter an excitation sequence from infile (or standard input) and synthesize speech data, sending the result to standard output.
Input and output data are in float format.
The exponential transfer function $H(z)$ related to the MLSA synthesis filter is obtained from the M-th order mel-cepstral coefficients $c_{\alpha}(m)$ as follows.

$$
H(z)=\exp \sum_{m=0}^{M} c_{\alpha}(m) \tilde{z}^{-m}
$$

where

$$
\tilde{z}^{-1}=\frac{z^{-1}-\alpha}{1-\alpha z^{-1}} .
$$

The highly accurate approximation method of the above transfer function is explained below. First, the transfer function $H(z)$ is expressed as

$$
\begin{aligned}
H(z) & =\exp \sum_{m=0}^{M} b(m) \Phi_{m}(z) \\
& =K \cdot D(z)
\end{aligned}
$$

where,

$$
\Phi_{m}(z)= \begin{cases}1, & m=0 \\ \frac{\left(1-\alpha^{2}\right) z^{-1}}{1-\alpha z^{-1}} \tilde{z}^{-(m-1)}, & m \geq 1\end{cases}
$$

and

$$
\begin{aligned}
K & =\exp b(0) \\
D(z) & =\exp \sum_{m=1}^{M} b(m) \Phi_{m}(z)
\end{aligned}
$$

Therefore, the coefficients $b(m)$ can be obtained through a linear transformation of $c_{\alpha}(m)$ (refer to mc 2 b and b 2 mc).

(a) Basic filter $F(z)$

(b) $R_{L}(F(z)) \simeq D(z) \quad L=4$

(c) Two-stage cascade structure
$R_{4}\left(F_{1}(z)\right) \cdot R_{4}\left(F_{2}(z)\right) \simeq D(z)$

Figure 1: Realization of exponential transfer function $1 / D(z)$

The filter $D(z)$ can be constructed as shown in figure $\mathbb{W}(\mathrm{b})$, where basic filter (figure $\mathbb{W}(\mathrm{a})$) is the following IIR filter.

$$
F(z)=\sum_{m=1}^{M} b(m) \Phi_{m}(z)
$$

If we want to improve the accuracy of the approximation, we can decompose the basic filter as shown in figure $\boldsymbol{\square}(\mathrm{c})$,

$$
F(z)=F_{1}(z)+F_{2}(z)
$$

where

$$
\begin{aligned}
& F_{1}(z)=b(1) z^{-1} \\
& F_{2}(z)=\sum_{m=2}^{M} b(m) \Phi_{m}(z)
\end{aligned}
$$

Also, the coefficients $A_{4, l}$ in figure $\mathbb{\mathbb { T }}(\mathrm{b})$ have same value as the LMA filter (refer to Imadt).

OPTIONS

-m	M	order of mel-cepstrum	[25]
-a	A	all-pass constant α	[0.35]
-p	P	frame period	[100]
-i	I	interpolation period	[1]
-b		output filter coefficient $b(m)$ (coefficients which are linear transformed from mel-cepstrum)	[FALSE]
-P	Pa	order of the Padé approximation	[4]
		$P a$ should be 4 or 5	
-k		filtering without gain	[FALSE]
-v		inverse filter	[FALSE]
-t		transpose filter	[FALSE]

EXAMPLE

In the following example, the excitation is constructed from pitch data read in float format from data.pitch, passed through an MLSA filter built from the mel-cepstrum in data.mcep, and the synthesized speech is written to data.syn:
excite < data.pitch | mlsadf data.mcep > data.syn

NOTICE

$$
P a=4 \text { or } 5 .
$$

SEE ALSO

॥ाcep, amicep, poledt, zerodt, Itcdf, ॥madt, glsadt, mglsadt

NAME

msvq - multi stage vector quantization

SYNOPSIS

$\operatorname{msvq} \quad[-\mathbf{l} L][-\mathbf{n} N][-\mathbf{s} S$ cbfile $][-\mathbf{q}][$ infile $]$

DESCRIPTION

$m s v q$ encodes the data from infile (or standard input) using multi-stage vector quantization with codebooks specified by multiple -s options, sending the result to standard output.
Input data is in float format and output data is in int format.

OPTIONS

$\mathbf{- l}$	L	length of vector	$[26]$
$\mathbf{- n}$	N	order of vector	$[L-1]$
$\mathbf{- s}$	S cbfile	codebook	$[\mathrm{N} / \mathrm{A} \mathrm{N} / \mathrm{A}]$
		S	codebook size
		cbfile codebook file	
$\mathbf{- q}$		output quantized vector	[FALSE]

EXAMPLE

In the example below, a two level vq is undertaken in input data.f file. the codebook sizes of cbfile 1 and cbfile 2 are 256 and the output is written to data.vq:

$$
\text { msvq -s } 256 \text { cbfile1 -s } 256 \text { cbfile2 < data.f > data.vq }
$$

NOTICE

The $-s$ option are specified number of stages.

SEE ALSO

Imsvq, vq, ivq, Ibg

NAME

nan - data check

SYNOPSIS

nan [infile]

DESCRIPTION

nan checks whether input data contains NaN (Not a Number) or Infinity, showing the positions where these values occurred.

EXAMPLE

This example reads input data data. f in float format and checks it:

```
nan data.f
```


NAME

ndps2c - Negative Derivative of Phase Spectrum (NDPS) to cepstrum[27]

SYNOPSIS

ndps2c [-l L][-m M][infile $]$

DESCRIPTION

$n d p s 2 c$ calculates the minimum phase cepstrum from the Negative Derivative of Phase Spectrum (NDPS) in the infile (or standard input), sending the result to standard output. For example, if the input sequence is

$$
n(0), n(1), n(2), \ldots, n(L / 2)
$$

then the cepstrum $c(m)$ is calculated from

$$
n(k)=\operatorname{Re}\left[\sum_{m=0}^{M} m c(m) \mathrm{e}^{-j \frac{2 \pi k m}{N}}\right] \quad(k=0, \cdots, N-1) .
$$

Both input and output files are is float format.

OPTIONS

$$
\begin{array}{lll}
\mathbf{- m} & M & \text { order of cepstrum } \\
\mathbf{- l} & L & \text { FFT length } \tag{256}
\end{array}
$$

EXAMPLE

The output file data.c contains the cepstrum in the range $n=0 \sim 30$ obtained from the NDPS file data.ndps, in float format:

$$
\text { ndps2c -1 } 2048-\text { m } 30 \text { data.ndps > data.cep }
$$

SEE ALSO

mgc2sp, c2ndps

NAME

norm0 - normalize coefficients

SYNOPSIS

norm0 [-m M][infile]

DESCRIPTION

norm0 normalizes vectors from infile (or standard input) by dividing vector components by the zero-order component, sending the result to standard output.
For the input sequence

$$
x(0), x(1), \ldots, x(M)
$$

the normalized output sequence is

$$
1 / x(0), x(1) / x(0), \ldots, x(M) / x(0)
$$

Input and output data are in float format.

OPTIONS

-m $\quad M$ order of input data

EXAMPLE

Speech data is read from data.f in float format, the 15 -th order autocorrelation coefficients are evaluated and normalized, and the results is written to data.nacorr:

```
frame < data.f | window | acorr -m 15 |\
norm0 -m 15 > data.nacorr
```


SEE ALSO

NAME
nrand - generate normal distributed random value

SYNOPSIS

nrand $[-\mathbf{l} L][-\mathbf{s} S][-\mathbf{m} M][-\mathbf{v} V][-\mathbf{d} D]$

DESCRIPTION

nrand generates a sequence of normally-distributed random values, sending the result to standard output.
Output data is in float format.

OPTIONS

$\mathbf{- l}$	L	output length	$[256]$
		In the case $L \leq 0$ then random values will be generated indefinitely.	
$\mathbf{- s}$	S	seed for nrand	$[1]$
$\mathbf{- m}$	M	mean of normal distribution	$[0.0]$
$\mathbf{- v}$	V	variance of normal distribution	$[1.0]$
$\mathbf{- d}$	D	standard deviation of normal distribution	$[1.0]$

EXAMPLE

Normal distributed random values of length 100 are generated and written to data.rnd:

```
nrand -1 100 -s 3 > data.rnd
```


NOTICE

If $L<0$, generate infinite sequence.

NAME
par2lpc - transform PARCOR to LPC

SYNOPSIS

par2lpc [-m M][infile]

DESCRIPTION

par2lpc calculates linear prediction (LPC) coefficients from M-th order PARCOR coefficients from infile (or standard input), sending the result to standard output.
The PARCOR input format is

$$
K, k(1), \ldots, k(M),
$$

and the LPC output format is

$$
K, a(1), \ldots, a(M) .
$$

Input and output data are in float format.
The Durbin algorithm is used for the transformation of PARCOR coefficients into linear prediction coefficients as follows;

$$
\begin{aligned}
a^{(m)}(m) & =k(m) \\
a^{(m)}(i) & =a^{(m-1)}(i)+k(m) a^{(m-1)}(m-i), \quad 1 \leq i \leq m
\end{aligned}
$$

where $m=1,2, \ldots, p$. The initial condition is

$$
a^{(M)}(m)=a(m), \quad 1 \leq m \leq M
$$

OPTIONS

-m $\quad M \quad$ order of LPC

EXAMPLE

PARCOR coefficients are read in float format from data.rc and converted into the corresponding linear prediction coefficients. The output is written to data.lpc:

```
par2lpc < data.rc > data.lpc
```


SEE ALSO

acom, ॥evdun, ॥pc, ॥pc2par

NAME
pca - principal component analysis

SYNOPSIS

pca $[-\mathbf{l} L][-\mathbf{n} N][-\mathbf{i} I][-\mathbf{e} e][-\mathbf{v}][-\mathbf{V} f n][$ infile $]$

DESCRIPTION

$p c a$ applies principal component analysis in the data from infile (or standard input) using the Jacobi method, and sends the result to standard output. pca can also calculate contribution ratio with the eigen values.

In infile, the input training data set consists of L-dimension vectors of the form:

$$
\boldsymbol{x}(0), \boldsymbol{x}(1), \boldsymbol{x}(2), \boldsymbol{x}(3), \cdots \quad \text { where } \boldsymbol{x}(i)=\left(x_{i}(1), x_{i}(2), \cdots, x_{i}(L)\right)
$$

Input and output data are in float format.

OPTIONS

$\mathbf{-}$	L	dimension of vector	$[3]$
$\mathbf{- n}$	N	number of output principal components	$[2]$
$\mathbf{- i}$	I	limit of iterations of the Jacobi method	$[10000]$
$\mathbf{-}$	e	threshold of convergence of the Jacobi method	$[0.000001]$
$\mathbf{-}$		output eigenvectors and mean vector of the training data	
$\mathbf{- V}$	$f n$	output eigenvalues and contribution rate (output filename $=$	[FALSE]
		fn)	

EXAMPLE

In the example below, the eigenvectors and the eigenvalues are calculated from data.f which contains three-dimensional training vectors. The mean vectors and eigenvectors are sent to pca.dat, and the eigenvalues are sent to eigen.dat.

$$
\text { pca data.f -n } 2-13-v-V \text { eigen.dat > pca.dat }
$$

Note that in the pca.dat, the mean vector is written in front of the eigenvectors. In the eigen.dat, the eigenvalues and their contribution ratio are bound by the same principal component and ordered according to the magnitude of the eigen values.

SEE ALSO

NAME
pcas - calculate principal component scores

SYNOPSIS

pcas $\quad[-\mathbf{l} L][-\mathbf{n} N]$ pcafile [infile $]$

DESCRIPTION

pcas calculates principal component scores from the data in infile (or standard input), and sends the result to standard output.
The input data set must be composed of an L-dimension, mean vector \boldsymbol{m} and eigenvectors $\boldsymbol{e}(i)$ as in:

$$
\boldsymbol{m}, \boldsymbol{e}(0), \boldsymbol{e}(1), \boldsymbol{e}(2), \cdots
$$

$$
\text { where } \boldsymbol{m}=(m(1), m(2), \cdots, m(L)) \text { and } \boldsymbol{e}(i)=\left(e_{i}(1), e_{i}(2), \cdots, e_{i}(L)\right)
$$

Input and output data are in float format.

OPTIONS

-l $\quad L \quad$ dimensionality of vector
-n N output number of principal components

EXAMPLE

In the example below, the principal component scores are calculated from test.dat and sent to score.dat. Here, pca.dat is a file that contains the mean and eigenvectors.
pcas pca.dat -1 3 -n 2 test.dat > score.dat
In pca.dat, the mean vector must be written before the eigenvectors.

SEE ALSO

рса

NAME
phase - transform real sequence to phase

SYNOPSIS

phase $[-\mathbf{l} L][-\mathbf{p}$ pfile $][-\mathbf{z}$ zfile $][-\mathbf{m} M][-\mathbf{n} N][$ infile $]$

DESCRIPTION

phase calculates the phase of the spectrum of a real sequence from infile (or standard input), and sends the result to standard output. Assume that the input sequence is

$$
x(0), x(1), \ldots, x(L-1)
$$

and the FFT is

$$
\begin{aligned}
X_{k} & =X\left(e^{j \omega}\right) \left\lvert\, \omega=\frac{2 \pi k}{L}\right. \\
& =\sum_{m=0}^{L-1} x(m) e^{-j \omega m} \left\lvert\, \omega=\frac{2 \pi k}{L}\right., \quad k=0,1, \ldots, L-1
\end{aligned}
$$

Then the output is given by

$$
Y_{k}=\arg X_{k}, \quad k=0,1, \ldots, L / 2
$$

In this case the phase is written in continuous form. The output data angular frequency varies from $0 \sim \pi$. Input and output data are in float format.
If the $\mathbf{- p}, \mathbf{- z}$ options are assigned then the phase of the corresponding filter related to the assigned coefficients is calculated ${ }^{\mathbb{I}}$.

OPTIONS

$\mathbf{- 1}$	L	frame length power of 2	[256]
$\mathbf{- p}$	pfile	numerator coefficients file	[NULL]
		The p file should follow this structure in float format:	
		$K, a(1), \ldots, a(M)$	

-z zfile denominator coefficients file
[NULL]
The zfile should follow this structure in float format:
$b(0), b(1), \ldots, b(N)$
The contents of pfile and zfile should be in a similar form to that used in the $d f s$ command. When only the -p option is assigned then the denominator is made equal to 1 . When only the $\mathbf{- z}$ option is assigned, the numerator and the gain K are both set to 1 . If neither $\mathbf{- p}$ nor $\mathbf{- z}$ are assigned, data is read from the standard input.

[^0]| $-\mathbf{m}$ | M | order of polynomial denominator
 If the number of input data values is less $M+1$, then M is
 set to the number of input data values -1 . On the other hand,
 There is no need to assign a values to M if one doesn't want
 the data to be analyzed is blocks of $M+1$ size.
 order of polynomial numerator
 Likewise the - m option, if the number of input data values
 is less then $N+1$, then N is set to the number of input data
 values -1. On the other hand, There is no need to assign a
 values to N if one doesn't want the data to be analyzed is
 blocks of $N+1$ size.
 unwrapping | $[L-1]$ |
| :--- | :--- | :--- | :--- |
| $-\mathbf{n} \quad$ | [TRUE] | | |

EXAMPLE

In the example below, the phase characteristic of a digital filter with coefficients assigned by the files data.p, data.z in float format can be displayed by:
phase -p data.p -z data.z | fdrw | xgr

If the filter defined by data.p, data.z is stable then the following command will give a similar result:

```
impulse | dfs -p data.p -z data.z | phase | fdrw | xgr
```


SEE ALSO

NOTICE

If the sample interval between FFT points is large (the value assigned by the -1 option is small), or if the phase characteristic includes steep angles (i.e. zeros and/or poles are close to the unit circle in the z domain), it might happen that the phase is not properly drawn in continuous form.

NAME
pitch - pitch extraction

SYNOPSIS

pitch $[-\mathbf{a} A][-\mathbf{s} S][-\mathbf{p} P][-\mathbf{T} T][-\mathbf{t} t][-\mathbf{L} L o][-\mathbf{H} H i][-\mathbf{o} O][$ infile $]$

DESCRIPTION

pitch extracts the pitch values from infile (or standard input), sending the result to standard output. The RAPT [24] and SWIPE' [25] algorithm are adopted for pitch extraction. They can be specified by -a option. The output format (pitch, F0 or $\log (\mathrm{F} 0)$) can be specified by -o option.
Both input and output files are in float format.

OPTIONS

-a $\quad A \quad$ algorithm used for extraction of pitch

$$
\begin{array}{ll}
A=0 & \text { RAPT } \\
A=1 & \text { SWIPE } \tag{16.0}
\end{array}
$$

-s $\quad S \quad$ sampling frequency (kHz)
-p $\quad P \quad$ frame shift
-T $\quad T \quad$ voiced/unvoiced threshold (used only for RAPT algorithm)
-t $t \quad$ voiced/unvoiced threshold (used only for SWIPE' algorithm)
-L Lo minimum fundamental frequency to search for (Hz)
-H Hi maximum fundamental frequency to search for (Hz)
-0 O output format

$$
\begin{array}{ll}
O=0 & \text { pitch } \\
O=1 & \mathrm{~F} 0 \\
O=2 & \log (\mathrm{~F} 0)
\end{array}
$$

EXAMPLE

In the example below, speech data in float format is read from data.f and the pitch data is extracted via SWIPE' algorithm under the condition that sampling frequency is 16 kHz , the frame shift is 80 point, and the minimum and maximum fundamental frequency are 80 and 165 Hz , respectively. Then, the output is written to data.pitch:

$$
\text { pitch -a } 1 \text {-s } 16-\text { p } 80-\text { L } 80-H 165 \text { data.f }>\text { data.pitch }
$$

SEE ALSO

NAME
poledf - all pole digital filter for speech synthesis

SYNOPSIS

poledf [-m M][-p P][-i $I][-\mathbf{t}][-\mathrm{k}]$ afile [infile $]$

DESCRIPTION

poledf derives an all pole standard form digital filter from the linear prediction (LPC) coefficients $K, a(1), \ldots, a(M)$ in afile and uses it to filter an excitation sequence from infile (or standard input) to synthesize speech data, sending the result to standard output.
Input and output data are in float format.
The transfer function $H(z)$ of an all pole standard form filter is

$$
H(z)=\frac{K}{1+\sum_{m=1}^{M} a(m) z^{-m}}
$$

OPTIONS

$\mathbf{- m}$	M	order of coefficients
$\mathbf{- p}$	P	frame period
$\mathbf{- i}$	I	interpolation period
$\mathbf{- t}$		transpose filter
$\mathbf{- k}$		filtering without gain

EXAMPLE

In the example below, the excitation is generated from the pitch information read from data.pitch in float format. It is then passed through the standard form synthesis filter built from the linear prediction coefficients file data.lpc, and the synthesized speech is output to data.syn:

```
excite < data.pitch | poledf data.lpc > data.syn
```


SEE ALSO

Ipc, acom, Itcdt, ॥madt, Zerodtl

NAME

> psgr - XY-plotter simulator for EPSF

SYNOPSIS

$$
\begin{gathered}
\mathbf{p s g r} \\
\\
\\
\\
{[-\mathbf{T} T \mathrm{~T} T \mathrm{title}][-\mathbf{-} S][-\mathbf{c} B][-\mathbf{x} X][-\mathbf{y} Y][-\mathbf{p} \mathbf{P}][-\mathbf{r} R][-\mathbf{b}][-\mathbf{R} R][-\mathbf{P}][\text { infile }]}
\end{gathered}
$$

DESCRIPTION

psgr converts FP5301 plotter commands from infile (or standard input) to PostScript (EPSF or PS), sending the result to standard output.

OPTIONS

-t	title	title of figure	[NULL]
-s	S	shrink	[1.0]
-c	C	number of copy	[1]
-x	X	x offset (mm)	[0]
-y	Y	y offset (mm)	[0]
-p	P	```paper (Letter, A0, A1, A2, A3, A4, A5, B0, B1, B2, B3, B4, B5)```	[FALSE]
-1		landscape	[FALSE]
-r	R	resolution (dpi)	[600]
-b		bold font mode	[FALSE]
-T	T	top margin (mm)	[0]
-B	B	bottom margin (mm)	[0]
-L	L	left margin (mm)	[0]
-R	R	right margin (mm)	[0]
-P		output Postscript code	[FALSE]

EXAMPLE

This example/command creates the figure file data.fig and sends it to a printer.

```
fig data.fig | psgr | lpr
```


NOTICE

- It may happen that a part of the Y axis label is not properly output. This problem can be solved by altering the margins.
-When the size of the figure is modified, and included in a $\mathrm{T}_{\mathrm{E}} X f i l e$, it may not be displayed correctly. To solve this problem, please use TEXoptions for including pictures and adjusting sizes.

SEE ALSO

fig, fdrw, 区gI

NAME

ramp - generate ramp sequence

SYNOPSIS

$\operatorname{ramp} \quad[-\mathbf{l} L][-\mathbf{n} N][-\mathbf{s} S][-\mathbf{e} E][-\mathbf{t} T]$

DESCRIPTION

ramp generates ramp sequences of length L, sending the result to standard output. The output is as follows.

$$
\underbrace{S, S+T, S+2 T, \ldots, S+(L-1) T}_{L}
$$

Output format is in float format. In the case the last value is assigned the generated sequence is,

$$
\underbrace{S, S+T, S+2 T, \ldots, E}_{(E-S) / T}
$$

If the $-1,-\mathrm{e}$ and -n options are used at the same time, only the last option is taken into account.

OPTIONS

$$
\begin{array}{llll}
\text {-l } & L & \text { length of ramp sequence } & \text { [256] } \\
& & \text { If } L \leq 0 \text { ramp values will be generated indefinitely. } & \\
\mathbf{- n} & N & \text { order of ramp sequence } & {[\mathrm{L}-1]} \\
\mathbf{- s} & S & \text { start value } & {[0]} \\
\mathbf{- e} & E & \text { end value } & {[\mathrm{N} / \mathrm{A}]} \\
\mathbf{- t} & T & \text { step size } & {[1]}
\end{array}
$$

EXAMPLE

The command below outputs the following sequence:

$$
\begin{array}{r}
y(n)=\exp (-n) \\
\text { ramp | sopr }-\mathrm{m}-1-\mathrm{E} \mid \mathrm{dmp}+\mathrm{f}
\end{array}
$$

NOTICE

- If $L<0$, generate infinite sequence.
-When -1 and -n and -e are specified 2 or more, latter argument is adopted.

SEE ALSO

impulse, step, train, sin

NAME
raw2wav - raw to wav (RIFF)

SYNOPSIS

raw2wav [-swab][-s S][-d $D][-\mathbf{n}][-\mathbf{N}][$ +type][infile]

DESCRIPTION

raw 2 wav converts file format from raw to wav.

OPTIONS

-swab		change endian	[FALSE]
-s	S	sampling frequency	[16000]
$\mathbf{- d}$	D	destination directory	[N/A]
$\mathbf{- n}$		normalization with the maximum value	[FALSE]
		if max $>=32767$	
-N	normalization	[FALSE]	
+type 1	input data type	[s]	
+type 2	output data type	[s]	

c	char (1 byte)	C	unsigned char (1 byte)
s	short (2 bytes)	S	unsigned short (2 bytes)
i3	int (3 bytes)	I3	unsigned int (3 bytes)
i	int (4 bytes)	I	unsigned int (4 bytes)
1	long (4 bytes)	L	unsigned long (4 bytes)
le	long long (8 bytes)	LE	unsigned long long (8 bytes)
f	float (4 bytes)	d	double (8 bytes)

EXAMPLE

In the following command, the file file.raw, in raw format is converted to the wav format file data.wav and saved to the same directory of the input file. Here, the -s option specifies the sampling frequency of the input file. One can also specify a different directory for the output file by using the -d option.

```
raw2wav -s 8000 data.raw
```


SEE ALSO

NAME

reverse - reverse the order of data in each block

SYNOPSIS

reverse [-l L][-n N][infile]

DESCRIPTION

reverse reverses the order of data within L-length blocks of input data from infile (or standard input), and sends the result to standard output. The default value for L is the entire file. If L is given but the file length is not a multiple of L, leftover values are discarded as shown in the example below.

OPTIONS

-l $\quad L \quad$ length of block
[EOF]
-n N order of block
[EOF-1]

EXAMPLE

Let's assume that the following data is read from data.in file in float format.

$$
\underbrace{0.0,1.0,2.0}, \underbrace{3.0,4.0,5.0}, \underbrace{6.0,7.0,8.0}, 9.0
$$

The command

```
reverse -l 3 data.in > data.out
```

will write the following output to data.out.

$$
\underbrace{2.0,1.0,0.0}, \underbrace{5.0,4.0,3.0}, \underbrace{8.0,7.0,6.0}
$$

NAME

rmse - calculation of root mean squared error

SYNOPSIS

rmse $\quad[-\mathbf{l} L][-\mathbf{n} N][-\mathbf{t} T][$-magic magic $][$-MAGIC MAGIC $]$ file1 [infile]

DESCRIPTION

rmse calculates RMSE (Root Mean Square Error) of input data sequences from infile (or standard input) and filel, sending the results to standard output.

If two files are given, the L-length time series

$$
\underbrace{x_{1}(0), x_{1}(1), \ldots, x_{1}(L-1)}, \underbrace{x_{2}(0), x_{2}(1), \ldots}
$$

and

$$
\underbrace{y_{1}(0), y_{1}(1), \ldots, y_{1}(L-1)}, \underbrace{y_{2}(0), y_{2}(1), \ldots}
$$

are read, and the RMSE of these two series are calculated and output. The RMSE is given by:

$$
\operatorname{RMSE}_{j}=\sqrt{\sum_{m=0}^{L-1}\left(x_{j}(m)-y_{j}(m)\right)^{2} / L}
$$

Input and output data are in float format.

OPTIONS

-I	L	length of vector to calculate RMSE.	[0]
-	N	If $L=0$, RMSE of whole input data is output. order of vector	[L-1]
-t	T	number of vector	[EOD]
-magic	magic	remove magic number	[FALSE]
-MAGIC	MAGIC	replace magic number by MAGIC if -magic option is not given, return error. if -magic or -MAGIC option is given multiple times, also return error.	[FALSE]

EXAMPLE

This example calculates the RMSE of input data files data.f1 and data.f2, and outputs its maximum and minimum values:

NOTICE

If $L>0$, calculate rmse frame by frame.

SEE ALSO

histogram, minmax

NAME

root_pol - calculate roots of a polynomial equation

SYNOPSIS

root_pol [-m M][-n N][-e $E][-\mathbf{i}][-\mathbf{s}][-\mathbf{r}][$ infile $]$

DESCRIPTION

root pol finds root values of a polynomial equation from infile (or standard input), and sends the result to standard output.

For a given input file, the coefficients

$$
a_{0}, a_{1}, \ldots, a_{n}
$$

of an n-th order polynomial equation of the form:

$$
P(x)=a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n},
$$

are first read from the file and then the roots of the polynomial are calculated by the Durand-Kerner-Aberth method.

If roots of $P(x)$ are z_{i}, the result is sent to standard output in complex form as

$$
\begin{array}{cc}
\operatorname{Re}\left[z_{0}\right], & \operatorname{Im}\left[z_{0}\right] \\
\operatorname{Re}\left[z_{1}\right], & \operatorname{Im}\left[z_{1}\right] \\
\vdots & \\
\operatorname{Re}\left[z_{n-1}\right], & \operatorname{Im}\left[z_{n-1}\right]
\end{array}
$$

or polar form as

$$
\begin{array}{cc}
\left|z_{0}\right|, & \arg \left[z_{0}\right] \\
\left|z_{1}\right|, & \arg \left[z_{1}\right] \\
\vdots & \\
\left|z_{n-1}\right|, & \arg \left[z_{n-1}\right]
\end{array}
$$

Both input and output data are in float format.

OPTIONS

$\mathbf{- m}$	M	order of polynomial equation	[32]
$\mathbf{- n}$	N	maximum iteration to search roots	$[1000]$
$\mathbf{-}$	E	error margin for roots ε	$\left[10^{-14}\right]$
$\mathbf{- i}$		set $a_{0}=1$	[FALSE]
$\mathbf{- s}$		reverse order of coefficients	[FALSE]
$\mathbf{- r}$		output results in polar form	[complex form]

EXAMPLE

The following command calculates roots of the polynomial equation specified in the file data.z. The results are output in polar form:

```
root_pol -r < data.z | x2x +a 2
```


NAME

\sin - generate sinusoidal sequence

SYNOPSIS

$\sin \quad[-\mathbf{l} L][-\mathbf{p} P][-\mathbf{m} M]$

DESCRIPTION

\sin generates a discrete sin wave sequence of period P, length L and magnitude M of the form,

$$
x(n)=M \cdot \sin \left(\frac{2 \pi}{P} \cdot n\right)
$$

and sends the result to standard output.
Both input and output data are in float format.

OPTIONS

$$
\begin{array}{llll}
\mathbf{-} & L & \text { length } & {[256]} \\
& & \text { If } L \leq 0, \text { sin values will be generated indefinitely. } \\
\mathbf{- p} & P & \text { period } \\
\mathbf{- m} & M & \text { magnitude }
\end{array}
$$

EXAMPLE

In the following example, a sin wave sequence is parsed through a Blackman window and the results are displayed the results on the screen:

$$
\text { sin -p } 12.3 \text { | window | fdrw | xgr }
$$

NOTICE

If $L<0$, generate infinite sequence.

SEE ALSO

impulse, step, train, ramp

NAME
smcep - mel-cepstral analysis using 2nd order all-pass filter[15, 16]

SYNOPSIS

$$
\begin{array}{ll}
\text { smcep } & {[-\mathbf{a} A][-\mathbf{t} t][-\mathbf{T} T][-\mathbf{s} s][-\mathbf{m} M][-\mathbf{l} L][-\mathbf{q} Q]} \\
& {[-\mathbf{i} I][-\mathbf{j} J][-\mathbf{d} D][-\mathbf{e} e][-\mathbf{E} E][-\mathbf{f} F][\text { infile }]}
\end{array}
$$

DESCRIPTION

smсер calculates the mel-cepstral coefficients from L-length framed windowed input data from infile (or standard input), sending the result to standard output. The analysis uses a second-order all-pass function raised to the $1 / 2$ power $1 / 2$:

$$
\begin{aligned}
A(z) & =\left(\frac{z^{-2}-2 \alpha \cos \theta z^{-1}+\alpha^{2}}{1-2 \alpha \cos \theta z^{-1}+\alpha^{2} z^{-2}}\right)^{\frac{1}{2}} \\
\tilde{z}^{-1} & =\frac{z^{-1}-\alpha}{1-\alpha z^{-1}}
\end{aligned}
$$

Input and output data are in float format.
In the mel-cepstral analysis using a 2 nd-order all pass function, the speech spectrum is modeled as m-th order cepstral coefficients $c(m)$ as follows.

$$
H(z)=\exp \sum_{m=0}^{M} c(m) B_{m}\left(e^{j \omega}\right)
$$

where

$$
\operatorname{Re}\left[B_{m}\left(e^{j \omega}\right)\right]=\frac{A^{m}\left(e^{j \omega}\right)+A^{m}\left(e^{-j \omega}\right)}{2}
$$

The Newton-Raphson method is applied to calculate the mel-cepstral coefficients through the minimization of the cost function.

OPTIONS

-a	A	all-pass constant α
-t	t	emphasized frequency $\theta * \pi$ (rad)
-T	T	emphasized frequency (Hz)
-s	s	sampling frequency (kHz)
-m	M	order of mel cepstrum
-I	L_{1}	frame length
-L	L_{2}	ifft size for making matrices
-q	Q	input data style
		$Q=0 \quad$ windowed data sequence $Q=1 \quad 20 \times \log \|f(w)\|$
		$Q=2 \quad \ln \|f(w)\|$
		$Q=3 \quad\|f(w)\|$
		$Q=4 \quad\|f(w)\|^{2}$

Usually, the options below do not need to be assigned.
-i $\quad I \quad$ minimum iteration of Newton-Raphson method
-j $\quad J \quad$ maximum iteration of Newton-Raphson method
-d $\quad D \quad$ end condition of Newton-Raphson
-e $e \quad$ small value added to periodogram
-E E floor in db calculated per frame
-f $\quad F \quad$ mimimum value of the determinant of the normal matrix

EXAMPLE

In the example below, speech data is read in float format from data.f, analyzed, and resulting mel-cepstral coefficients are written to data.mсер:

```
frame < data.f | window | smcep > data.mcep
```

Also, in the following example, the floor value is set as -30 dB per frame by using the -E option.

```
frame < data.f | window | smcep -E -30 > data.mcep
```


NOTICE

- Value of e must be $e \geq 0$.
- Value of E must be $E<0$.
-Option -T is used with option -s .
- Value of T must be $T \geq 1000 * s / 2$.

SEE ALSO

uels, gcep, mcep, mgcep, misadt

NAME
snr - evaluate SNR and segmental SNR

SYNOPSIS

snr $\quad[-1 L][-\mathrm{o} O]$ file1 [infile $]$

DESCRIPTION

srn calculates the SNR (Signal to Noise Ratio) and the SNR $_{\text {seg }}$ (segmental SNR) between corresponding L-length frames of file 1 and infile (or standard input), sending the result to standard output. The output format is specified by the -o option.
The SNR and SNR $_{\text {seg }}$ are calculated through the following equations.

$$
\begin{gather*}
\mathrm{SNR}=10 \log \frac{\sum_{n}\{x(n)\}^{2}}{\sum_{n}\{e(n)\}^{2}} \quad[\mathrm{~dB}] \\
\mathrm{SNR}_{\text {seg }}=\frac{1}{N_{i}} \sum_{i=1}^{N_{i}} \mathrm{SNR}_{i} \quad[\mathrm{~dB}] \tag{dB}
\end{gather*}
$$

where

$$
e(n)=x_{1}(n)-x_{2}(n)
$$

The number of frames is represented by N_{i}. For signals with small amplitudes, such as consonant sounds, the segmental SNR represents a better subjective measure than the SNR.

OPTIONS

```
-l L frame length[256]
-o \(O\) output data format [0]
0 SNR and SNRseg
1 SNR and SNRseg in detail
2 SNR
3 SNRseg
if 0 or 1 are assigned the output data is written in ASCII format.
if 2 or 3 are assigned the output data is written in float format
```


EXAMPLE

The following command reads the input files data.f1 and data.f2, evaluates the SNR and segmental SNR, and sends the results to the standard output:

```
snr data.f1 data.f2
```


SEE ALSO

histogram, average, rmse

NAME
sopr - execute scalar operations

SYNOPSIS

sopr $\quad[-\mathbf{a} A][-\mathbf{s} S][-\mathbf{m} M][-\mathbf{d} D][-\mathbf{f} F][-\mathbf{c} \mathbf{C}][-m a g i c$ magic $]$
[-MAGIC MAGIC] [-ABS] [-INV] [-P] [-R] [-SQRT] [-LN]
[-LOG2] [-LOG10] [-LOGX X] [-EXP] [-POW2] [-POW10]

$$
\text { [-POWX } X \text {] [-FIX] [-UNIT] [-CLIP] [-SIN] [-COS] [-TAN] }
$$

$$
[-A T A N][-\mathbf{r} \mathbf{m} n][-\mathbf{w} \mathbf{m} n][\text { infile }]
$$

DESCRIPTION

sopr performs a sequence of scalar operations on float data from infile (or standard input), sending the float output data to standard output.
The sequence of operations is specified by command line options and is performed in the given order.

OPTIONS

$\mathbf{- a}$	A	addition $y=x+A$	[FALSE]
$\mathbf{- s}$	S	subtraction $y=x-S$	[FALSE]
$\mathbf{- \mathbf { m }}$	M	multiplication $y=x * M$	[FALSE]
$\mathbf{- d}$	D	division $y=x / D$	[FALSE]
$\mathbf{- \mathbf { f }}$	F	flooring $y=F$ if $x<F$	[FALSE]
$\mathbf{- c}$	C	ceiling $y=C$ if $x>C$	[FALSE]
$\mathbf{- m a g i c ~}$	magic	remove magic number	[FALSE]
$\mathbf{- M A G I C}$	$M A G I C$	replace magic number by MAGIC	[FALSE]
		if -magic option is not given, return error. if -magic or -MAGIC option is given multiple	
		times, also return error.	

If the argument of the above operation option given is "dB", "cent", "semitone" or "octave" then the values $20 / \log _{e} 10,1200 / \log _{e} 2,12 / \log _{e} 2$ or $1 / \log _{e} 2$ are assigned, respectively. Likewise, if "pi" is written after the operation option, then its value will be used. Expression such as " $\ln 2$ ", "exp10", "sqrt30" can also be used as arguments.

-ABS	absolute $y=\|x\|$	[FALSE]
-INV	inverse $y=1 / x$	[FALSE]
- $\mathbf{- P}$	square $y=x^{2}$	[FALSE]
-R	square root $y=\sqrt{x}$	[FALSE]
-SQRT	square root $y=\sqrt{x}$	[FALSE]
-LN	logarithm $y=\log x$	[FALSE]
-LOG2	$\operatorname{logarithm} y=\log _{2} x$	[FALSE]

-LOG10		logarithm $y=\log _{10} x$
-LOGX	X	logarithm $y=\log _{X} x$
-EXP		exponential $y=\exp x$
-POW2		power of $2 y=2^{x}$
-POW10		power of $10 y=10^{x}$
-POWX	X	power of X $y=X^{x}$
-FIX		round (int) x
-UNIT		unit step $u(x)$
-CLIP		clipping $x * u(x)$
-SIN		$\sin y=\sin (x)$
-COS		$\cos y=\cos (x)$
-TAN		$\tan y=\tan (x)$
-ATAN		$\operatorname{atan} y=\operatorname{atan}(x)$
-r	$\mathrm{m} n$	read from memory register $\mathrm{m} n(n=0 . .9)$
-w	$\mathrm{m} n$	write from memory register $\mathrm{m} n(n=0 . .9)$

[FALSE]

EXAMPLE

In the following example, a ramp function $(0,1,2, \ldots)$ is multiplied by $2(0,2,4, \ldots)$ and then 1 is added $(1,3,5, \ldots)$:

```
ramp | sopr -m 2 -a 1 | dmp +f
```

The output file data.avrg contains the mean taken from data in files data.f1 and data.f 2 read in float format:

```
vopr -a data.f1 data.f2 | sopr -d 2 > data.avrg
```

In the following examples, data is read in float format from data.f, and the results in dB are written to the output file:

```
sopr data.f -LN -m dB | dmp +f
sopr data.f -LOG10 -m 20 | dmp +f
```

In the following, the results in cent are written to the output file:

```
sopr data.f -LN -m cent | dmp +f
sopr data.f -LOG2 -m 1200 | dmp +f
```

The following example replace the number 0 by 1.0 . While the -Magic option is not given, skip any operations at the magic number.

```
sopr data.f -magic 0 -m 4.0 -INV -MAGIC 1.0 | dmp +f
```

If we want to evaluate the following equation,

$$
y=\left(1+3 x+4 x^{2}\right) /\left(1+2 x+5 x^{2}\right)
$$

then memory registers can be used as follows.

$$
\begin{aligned}
& \text { sopr data.f -w m0 -m } 5 \text {-a } 2-m \mathrm{mD} \text {-a } 1 \text {-w m1 \} } \\
{\text {-r m0 -m } 4 \text {-a } 3 \text {-m m0 -a } 1 \text {-d m1 | dmp +f }}
\end{aligned}
$$

In the example above, m 0 and m 1 are memory registers. Registers from m 0 to m 9 can be used. The -w option is used to write into a memory register, while the -r option is used to read from a register.

SEE ALSO

NAME
spec - transform real sequence to log spectrum

SYNOPSIS

spec $[-\mathbf{l} L][-\mathbf{m} M][-\mathbf{n} N][-\mathbf{z z}$ zile $][-\mathbf{p}$ pfile $]$
[-e $e][-\mathbf{E} E][-\mathbf{o} O][$ infile $]$

DESCRIPTION

spec computes the log spectrum magnitude of framed windowed input data from infile (or standard input), and sends the result to standard output.
Alternatively, given the poles (-p pfile option) and zeroes (-z zfile option) of a digital filter, spec computes the frequency response of that filter.
The output format is specified by the -y option.
If the input sequence is given by

$$
x(0), x(1), \ldots, x(L-1)
$$

and the FFT algorithm is used to evaluate

$$
\begin{aligned}
X_{k} & =X\left(e^{j \omega}\right) \left\lvert\, \omega=\frac{2 \pi k}{L}\right. \\
& =\sum_{m=0}^{L-1} x(m) e^{-j \omega m} \left\lvert\, \omega=\frac{2 \pi k}{L}\right., \quad k=0,1, \ldots, L-1
\end{aligned}
$$

then if the $\mathbf{- y}$ option is applied, the output will be

$$
Y_{k}=20 \log _{10}\left|X_{k}\right|, \quad k=0,1, \ldots, L / 2
$$

The output data corresponds to angular frequencies varying from $0 \sim \pi$. Input and output data are in float format.
If the $\mathbf{- p}$ and $\mathbf{- z}$ options are assigned then the phase of the corresponding filter related to the assigned coefficients is calculated ${ }^{\mathbb{D}}$.

OPTIONS

-l $\quad L \quad$ FFT window length
L must be power of 2
-m $\quad M \quad$ order of MA part
In the case where the number of input data values is less then $M+1$, then M is made equal to the number of input data values -1 . You don't need to assign a value to M in case there is no need to for the data to be analyzed in blocks of size $M+1$.

[^1]

The contents of pfile and zfile should be in a similar form to that used in the $d f s$ command. When only the $\mathbf{- p}$ option is assigned, the denominator is set to 1 . When only the $\mathbf{- z}$ option is assigned, the numerator and the gain K are set to 1 . If neither $\mathbf{- p}$ nor $-\mathbf{z}$ are assigned, data is read from the standard input.

EXAMPLE

In the example below, a pulse train excitation is passed through digital filter and Blackman window. The log spectrum magnitude is, thus, evaluated and plotted on the screen:

```
train -p 50 | dfs -a 1 0.9 | window | spec | fdrw | xgr
```

This example evaluates the frequency response of a digital filter with coefficients specified in data.p and data.z in float format:

```
spec -p data.p -z data.z | fdrw | xgr
```

A similar result can be obtained with the following command, for a stable filter:

```
impulse | dfs -p data.p -z data.z | spec | fdrw | xgr
```

Also, in the following example, the floor value is set as -30 dB per frame by using the -E option.

SPEC
 Speech Signal Processing Toolkit
 SPEC 197
 spec -E -30 data.f | fdrw | xgr

NOTICE

- Value of e must be $e \geq 0$.
- Value of E must be $E<0$.

SEE ALSO

phase, 田, Iftro, dfs

NAME

step - generate step sequence

SYNOPSIS

step $\quad[\mathbf{l} L][-\mathbf{n} N][-\mathbf{v} V]$

DESCRIPTION

step generates a step sequence of length L, sending the result to standard output.
The output is in float format, as follows.

$$
\underbrace{V, V, V, \ldots, V}_{L}
$$

OPTIONS

-l L length
In the case where $L \leq 0$, step values will be generated indefinitely.
-n $\quad N$ order
-v $\quad V$ step value

EXAMPLE

In the following example, the unit step sequence is passed through a digital filter and sent to the standard output:

$$
\text { step }|\mathrm{dfs}-\mathrm{a} 1-0.8| \mathrm{dmp}+f
$$

NOTICE

If $L<0$, generate infinite sequence.

SEE ALSO

impulse, train, ramp, sin

NAME
swab - swap bytes

SYNOPSIS

swab $\left[-\mathbf{S} S_{1}\right]\left[-\mathbf{s} S_{2}\right]\left[-\mathbf{E} E_{1}\right]\left[-\mathbf{e} E_{2}\right][$ trype $][$ infile $]$

DESCRIPTION

swab changes the byte order (from big-endian to little-endian or vice versa) of the input data from infile (or standard input), and sends the result to standard output.
The range of input data that is changed can be restricted with the $-\mathrm{S},-\mathrm{E}$ or $-\mathrm{s},-\mathrm{e}$ options. The +type option specifies the input and output data formats.

OPTIONS

$\mathbf{- S}$	S_{1}	start address	$[0]$
$\mathbf{- s}$	S_{2}	start offset number	$[0]$
$\mathbf{- E}$	E_{1}	end address	$[\mathrm{EOF}]$
$\mathbf{- e}$	E_{2}	end offset number	$[0]$
+type	Input and output data format	$[\mathrm{s}]$	

s	short (2 bytes)	S	unsigned short (2 bytes)
i3	int (3 bytes)	I3	unsigned int (3 bytes)
i	int (4 bytes $)$	I	unsigned int (4 bytes)
1	long (4 bytes $)$	L	unsigned long (4 bytes)
le	long long (8 bytes)	LE	unsigned long long (8 bytes)
f	float (4 bytes)	d	double (8 bytes)

EXAMPLE

In the example below, the byte order of the file data.f in float format is changed and written to data.swab:

$$
\text { swab }+f \text { data.f > data.swab }
$$

NAME

symmetrize - symmetrize the sequence of data

SYNOPSIS

symmetrize $\quad[-1 L][-0 o][$ infile $]$

DESCRIPTION

symmetrize symmetrizes the sequence of $L / 2$-length of input data from infile (or standard input) and sends the result to standard output. The value of L must be even number. The output format is specified by the -o option. If the file length is not a multiple of $L / 2$, leftover values are discarded as shown in the example below.

$$
\text { Input sequence } \quad x(0), x(1), \ldots, x(L / 2-1)
$$

OPTIONS

$$
\begin{array}{lll}
\mathbf{- l} & L & \text { frame length } \\
\mathbf{- 0} & o & \text { output format } \\
& & o=0 \\
& x(0), x(1), \ldots, x(L / 2-1), x(L / 2-2), \ldots, x(2), x(1) \\
& o=1 & x(L / 2-1), x(L / 2-2), \ldots, x(1), x(0), x(1), \ldots, x(L / 2-1) \\
& o=2 & x(L / 2-1) / 2, x(L / 2-2), \ldots, x(1), x(0), x(1), \ldots, x(L / 2-1) / 2
\end{array}
$$

EXAMPLE

Let's assume that the following data is read from data.in file in float format.

$$
\underbrace{0.0,1.0,2.0,3.0}, 4.0
$$

The command

$$
\text { symmetrize -1 } 8 \text {-o } 1 \text { data.in }>\text { data.out }
$$

will write the following output to data.out.

$$
\underbrace{3.0,2.0,1.0,0.0,1.0,2.0,3.0}
$$

NOTICE

- value of L must be even number.
\bullet value of L must be $L \geq 4$.
\bullet value of L must be $L \geq 6$ (if $o==0$).

NAME

train - generate pulse sequence

SYNOPSIS

train $[-\mathbf{l} L][-\mathbf{p} P]$

DESCRIPTION

train generates a normalized pulse train sequence or a sequence with values ± 1, and sends the result to standard output. Output data is in float format.

OPTIONS

$$
\begin{array}{llll}
\mathbf{- l} & L & \text { sequence length } & {[256]} \\
\mathbf{- p} & P & \text { frame period }(P \geq 1.0) \\
& & \text { if } P=0.0 \text { a sequence with values } \pm 1 \text { is generated. } \tag{0.0}\\
\mathbf{- n} & N & \begin{array}{l}
\text { type of normalization } \\
\end{array} & \text { If } x(n) \text { is the impulse sequence, then: }
\end{array}
$$

0 no-normalization
1 normalization as $\sum_{n=0}^{L-1} x^{2}(n)=1$
2 normalization as $\sum_{n=0}^{L-1} x(n)=1$

EXAMPLE

The following example displays the spectrum of the signal obtained from passing a train pulse sequence through a digital filter:

```
train | dfs -b 1 0.9 | window | spec | fdrw | xgr
```


SEE ALSO

mpulse, sin, step, ramp

NAME
transpose - transpose a matrix

SYNOPSIS

transpose $[-\mathbf{m} m][-\mathbf{n} n][$ infile $]$

DESCRIPTION

transpose assumes the input data from infile (or standard input) as $m \times n$ matrix and transposes the matrix to $n \times m$ matrix. Then, sends the result to standard output. You have to define the number of rows and columns and if the file length is not a multiple of $m \times n$, leftover values are discarded as shown in the example below.

Input sequence

Output sequence

$$
\begin{array}{ccccccc}
x(0,0) & , & x(1,0) & , & \cdots & , & x(m-1,0) \\
x(0,1) & , & x(1,1) & , & \cdots & , & x(m-1,1) \\
\vdots & & \vdots & & & \vdots \\
x(0, n-1) & , & x(1, n-1) & , & \cdots & , & x(m-1, n-1)
\end{array}
$$

OPTIONS

-m $\quad m$ number of rows
-n n number of columns

EXAMPLE

Let's assume that the following data is read from data.in file in float format.

$$
\underbrace{0.0,1.0,2.0}, \underbrace{3.0,4.0,5.0}, 6.0
$$

The command

$$
\text { transpose -m } 2 \text {-n } 3 \text { data.in > data.out }
$$

will write the following output to data.out.

$$
\underbrace{0.0,3.0}, \underbrace{1.0,4.0}, \underbrace{2.0,5.0}
$$

NAME
uels - unbiased estimation of \log spectrum [[2, 3]

SYNOPSIS

uels $\quad[-\mathbf{m} M][-\mathbf{l} L][-\mathbf{q} Q][-\mathbf{i} I][-\mathbf{j} J][-\mathbf{d} D][-\mathbf{e} e][-\mathbf{E} E][$ infile $]$

DESCRIPTION

uels uses the unbiased estimation of \log spectrum method to calculate cepstral coefficients $c(m)$ from L-length framed windowed input data from infile (or standard input), sending the result to standard output.
Input and output data are in float format.
Until the proposition of the unbiased estimation of log spectrum method, the conventional methods had two main problems. The importance of smoothing the log spectrum was not clear and it could not be guaranteed that the bias of the estimated value would be sufficiently small.
The evaluation procedure to obtain the unbiased estimation log spectrum values is similar to other improved methods to calculate cepstral coefficients. The main difference is that in UELS method a non-linear smoothing is used to guarantee that the estimation will be unbiased.

OPTIONS

$$
\begin{array}{lll}
\mathbf{- m} & M & \text { order of cepstrum } \tag{25}\\
\mathbf{- l} & L & \text { frame length } \\
\mathbf{- q} & Q & \text { input data style } \\
& & Q=0 \\
\\
& & Q=1 \\
& \left.\begin{array}{ll}
& \text { windowed data sequence } \\
& \\
& \\
& \\
& Q=3
\end{array} \quad|n| f(w) \right\rvert\, \\
& & |f(w)|
\end{array}
$$

Usually, the options below do not need to be assigned.
-i I minimum iteration
-j J maximum iteration
-d D end condition
-e $\quad e \quad$ small value added to periodogram
-E E floor in db calculated per frame

EXAMPLE

The example below reads data in float format, evaluates 15 -th order log spectrum through UELS method, and sends spectrum coefficients to data.cep:

```
frame < data.f | window | uels -m 15 > data.cep
```

Also, in the following example, the floor value is set as -30 dB per frame by using the -E option.

```
frame < data.f | window | uels -E -30 > data.cep
```


NOTICE

- value of e must be $e \geq 0$.
- value of E must be $E<0$.

SEE ALSO

feep, meep, mgcep, Imadt

NAME
ulaw - μ-law compress/decompress

SYNOPSIS

ulaw $[-\mathbf{v} V][-\mathbf{u} U][-\mathbf{c}][-\mathbf{d}][$ infile $]$

DESCRIPTION

ulaw converts data between 8 -bit μ-law and 16 -bit linear formats. The input data is infile (or standard input), and the output is sent to standard output.
If the input is $x(n)$, the output is $y(n)$, the largest value of input data is V, the compression coefficients vector is U, then the compression will be performed using made through the following equation.

$$
y(n)=\operatorname{sgn}(x(n)) V \frac{\log \left(1+U \frac{|x(n)|}{V}\right)}{\log (1+U)}
$$

Likewise, the decompression can be performed by applying the following:

$$
y(n)=\operatorname{sgn}(x(n)) V \frac{(1+u)^{|x(n)| / V}-1}{U}
$$

OPTIONS

-v $\quad V$ maximum value of input
[32768]
-u $\quad U$ compression ratio
-c coder mode
-d decoder mode

EXAMPLE

In the following, 16-bit data read from data.s is compressed to 8 -bit ulaw format, and output to data.ulaw

$$
\text { x2x +sf data.s | ulaw | sopr -d } 256 \mid \mathrm{x} 2 \mathrm{x}+\mathrm{fc}-\mathrm{r}>\text { data.ulaw }
$$

NAME
us - up-sampling

SYNOPSIS

us $\quad[-\mathbf{s} S][-\mathbf{c}$ file $][-\mathbf{u} U][-\mathbf{d} D][$ infile $]$

DESCRIPTION

us up-samples data from infile (or standard input), sending the result to standard output.
The format of input and output data is float. The following filter coefficients can be used.

$$
\begin{aligned}
& S=23 F \quad \$ \text { SPTK/share/SPTK/lpfcoef.2to3f } \\
& S=23 S \quad \$ \text { SPTK/share/SPTK/lpfcoef.2to3s } \\
& S=34 \quad \$ \text { SPTK/share/SPTK/lpfcoef.3to4 } \\
& S=35 \quad \$ \text { SPTK/share/SPTK/lpfcoef.3to5 } \\
& S=45 \quad \$ \text { SPTK/share/SPTK/lpfcoef.4to5 } \\
& S=57 \quad \$ \mathrm{SPTK} / \text { share/SPTK/lpfcoef.5to7 } \\
& S=58 \quad \$ \text { SPTK/share/SPTK/lpfcoef.5to8 } \\
& S=78 \quad \$ \text { SPTK/share/SPTK/lpfcoef.7to8 } \\
& \text { (\$SPTK is the directory where toolkit was installed.) }
\end{aligned}
$$

The ratio between up-sampling and down-sampling can be modified by the $\mathbf{- u}$ and $\mathbf{- d}$ options respectively. If you want to specify filter coefficients, $\mathbf{- c}$ should also be specified.

Filter coefficients are in ASCII format.
For up-sampling from 10 or 12 to 16 kHz , the us/6 command can be used. For up/downsampling between $8,10,12$ or and $11.025,22.05$ or 44.1 kHz , the uscd command can be used. The as command may also be used for down-sampling.

OPTIONS

```
-s S conversion type
\[
S=23 F \quad \text { up-sampling by } 2: 3
\]
\[
S=23 S \quad \text { up-sampling by } 2: 3
\]
\[
S=34 \quad \text { up-sampling by } 3: 4
\]
\[
S=34 \quad \text { up-sampling by } 3: 5
\]
\[
S=45 \quad \text { up-sampling by } 4: 5
\]
\[
S=57 \quad \text { up-sampling by } 5: 7
\]
\[
S=58 \quad \text { up-sampling by } 5: 8
\]
\[
S=78 \quad \text { up-sampling by } 7: 8
\]
-c file filename of low pass filter coefficients
-u \(U\) up-sampling ratio
-d \(D\) down-sampling ratio

\section*{EXAMPLE}

In this example, the speech data in the input file data. 16 , which was sampled at 16 kHz in short int format, is converted to an 44.1 kHz sampling rate:
\[
\begin{aligned}
& \text { x2x +sf data. } 16 \mid \text { us -s } 23 F \mid \text { us }-s 23 S \mid \text { us }-s 57 \mid \\
& \text { us }-c / \text { /usr/local/SPTK/lib/lpfcoef. } 5 \text { to }-u 7-d 8 \mid \\
& \text { x2x }+f s>\text { data. } 44 \\
& \text { Note: } \frac{44100}{16000}=\frac{3 \times 3 \times 7 \times 7 \times 100}{2 \times 2 \times 5 \times 8 \times 100}
\end{aligned}
\]

\section*{SEE ALSO}
[ds, uscd, usi6

NAME
us16 - up-sampling from 10 or 12 kHz to 16 kHz

\section*{SYNOPSIS}
us16 [-s \(S\) ][infile ][outfile ]
us16 [-s \(S\) ]infile1 ... [infileN] outdir

\section*{DESCRIPTION}
us 16 upsamples data from 10 kHz or 12 kHz to 16 kHz . If the arguments infile and outfile are not given, standard input and standard output are used. If several input files are given, the last argument is considered as a directory name and multiple output files are created in that directory, with names similar to the input file names but with file extensions changed to ". 16 ".

\section*{OPTIONS}
-s \(S\) input sampling frequency \(10-12 \mathrm{kHz}\)

\section*{EXAMPLE}

In the example below, speech data sampled at 10 kHz is read from data.10, upsampled to 16 kHz , and the results are written to data. 16 :
```

us16 -s 10 < data.10 > data.16

```

\section*{SEE ALSO}
ds, us, uscd

NAME
uscd - up/down-sampling from \(8,10,12\), or 16 kHz to \(11.025,22.05\), or 44.1 kHz

\section*{SYNOPSIS}
```

uscd [-s S S][infile][outfile]
uscd [-s S S] infile1 ...[infileN] outdir

```

\section*{DESCRIPTION}
uscd converts the sample rate from one of \(8,10,12\), or 16 kHz to one of \(11.025,22.04\), or 44.1 kHz . If infile and outfile arguments are not given, standard input and output are used. If the last argument given names a directory, each of the preceding argument files is re-sampled. The results are stored in multiple files in that directory, with base names the same as the input file base names, but with extensions indicating the new sample rate.

\section*{OPTIONS}
\begin{tabular}{llll}
\(\mathbf{- s}\) & \(S 1\) & input sampling frequency (one of 8, 10, 12 or 16) & [10] \\
\(\mathbf{- S}\) & \(S 2\) & output sampling frequency (one of \(11.025,22.05\), or 44.1\()\)
\end{tabular}

\section*{EXAMPLE}

In the example below, speech data sampled at 16 kHz is read from data. 16 , upsampled to 22.05 kHz , and the results are written to data. 22 :
```

uscd -s 16 22.05 < data. 16 > data. 22

```

\section*{SEE ALSO}
[ds, us, us) 6

NAME
vc - GMM-based voice conversion[26]

\section*{SYNOPSIS}
\[
\begin{gathered}
\text { vc } \quad\left[-\mathbf{l} L_{1}\right]\left[-\mathbf{n} N_{1}\right]\left[-\mathbf{L} L_{2}\right]\left[-\mathbf{N} N_{2}\right][-\mathbf{m} M]\left[-\mathbf{d}\left(f n \mid d_{0}\left[d_{1} \ldots\right]\right)\right] \\
\left.\left[-\mathbf{r} N_{R} W_{1}\left[W_{2}\right]\right][-\mathbf{g} \text { gvfile }][-\mathbf{e} e] \text { gmmfile } \text { [infile }\right]
\end{gathered}
\]

\section*{DESCRIPTION}
\(v c\) carries out a GMM-based non-linear parameter conversion based on the maximumlikelihood estimation of a parameter trajectory [26]. Furthermore, \(v c\) supports a parameter conversion considering Global Variance (GV) of the target feature vectors. vc converts the source static feature vector sequence from infile (or standard input) into the target static feature vector sequence, and sends the results to standard output. The gmmfile must be specified to carry out the conversion and it must have the same file format as the one generated by the \(g m m\) command (cross or full covariance).
Both input and output are in float format.
Let vectors \(\boldsymbol{x}\) and \(\boldsymbol{y}\) be time sequence of the \(D\)-dimensional source and target feature vectors, respectively. They can be written as
\[
\begin{aligned}
& \boldsymbol{x}=\left[\boldsymbol{x}_{1}^{\top}, \boldsymbol{x}_{2}^{\top}, \ldots, \boldsymbol{x}_{t}^{\top}, \ldots, \boldsymbol{x}_{T}^{\top},\right]^{\top}, \\
& \boldsymbol{y}=\left[\boldsymbol{y}_{1}^{\top}, \boldsymbol{y}_{2}^{\top}, \ldots, \boldsymbol{y}_{t}^{\top}, \ldots, \boldsymbol{y}_{T}^{\top},\right]^{\top} .
\end{aligned}
\]
where the notation \({ }^{\top}\) denotes transposition of the vector. Furthermore, \(2 D\)-dimensional source and target feature vectors are defined as \(\boldsymbol{X}_{t}=\left[\boldsymbol{x}_{t}^{\top}, \Delta \boldsymbol{x}_{t}^{\top}\right]^{\top}\) and \(\boldsymbol{Y}_{t}=\left[\boldsymbol{y}_{t}^{\top}, \Delta \boldsymbol{y}_{t}^{\top}\right]^{\top}\) consisting of \(D\)-dimensional static and dynamic features at frame \(t\). Their time sequence are written as
\[
\begin{aligned}
\boldsymbol{X} & =\left[\boldsymbol{X}_{1}^{\top}, \boldsymbol{X}_{2}^{\top}, \ldots, \boldsymbol{X}_{t}^{\top}, \ldots, \boldsymbol{X}_{T}^{\top},\right]^{\top}, \\
\boldsymbol{Y} & =\left[\boldsymbol{Y}_{1}^{\top}, \boldsymbol{Y}_{2}^{\top}, \ldots, \boldsymbol{Y}_{t}^{\top}, \ldots, \boldsymbol{Y}_{T}^{\top},\right]^{\top} .
\end{aligned}
\]

The dynamic features are often calculated as regression coefficients from their neighboring static features, i.e.,
\[
\Delta \boldsymbol{x}_{t}=\sum_{\tau=-L_{-}^{(1)}}^{L_{+}^{(1)}} w^{(1)}(\tau) \boldsymbol{x}_{t+\tau}
\]
where \(\left\{w^{(1)}(\tau)\right\}_{\tau=-L_{-}^{(1)}, \ldots, L_{+}^{(1)}}\) are window coefficients to calculate the first order dynamic feature. The relationship between a sequence of the static feature vectors \(y\) and that of the static and dynamic feature vectors \(\boldsymbol{Y}\) can be arranged in a matrix form as
\[
Y=W y
\]
\(\boldsymbol{W}\) is a \(2 D T \times D T\) window matrix and the elements of \(\boldsymbol{W}\) are given as follows:
\[
\begin{aligned}
\boldsymbol{W} & =\left[\begin{array}{lllll}
\boldsymbol{W}_{1} & \ldots & \boldsymbol{W}_{t} & \ldots & \boldsymbol{W}_{T}
\end{array}\right]^{\top} \otimes \boldsymbol{I}_{M \times M}, \\
\boldsymbol{W}_{t} & =\left[\begin{array}{ll}
\boldsymbol{w}_{t}^{(0)}, \boldsymbol{w}_{t}^{(1)}
\end{array}\right], \\
\boldsymbol{w}_{t}^{(d)} & =[\underbrace{0, \ldots, 0}_{t-L_{-}^{(d)}-1}, w^{(d)}\left(-L_{-}^{(d)}\right), \ldots, w^{(d)}(0), \ldots, w^{(d)}\left(L_{+}^{(d)}\right), \underbrace{0, \ldots, 0}_{T-\left(t+L_{+}^{(d)}\right)}]^{\top}, d=0,1
\end{aligned}
\]
where \(L_{-}^{(0)}=L_{+}^{(0)}=0, \boldsymbol{w}^{(0)}=1\), and \(\otimes\) denotes the Kronecker product for matrices. Delta-delta features can also be used straightforwardly.
The GMM \(\boldsymbol{\lambda}^{(\boldsymbol{Z})}\) of the joint p.d.f. \(P\left(\boldsymbol{Z}_{t} \mid \boldsymbol{\lambda}^{(\boldsymbol{Z})}\right)\) is trained in advance using joint vectors \(\boldsymbol{Z}_{t}=\left[\boldsymbol{X}_{t}^{\top}, \boldsymbol{Y}_{t}\right]^{\top}:\)
\[
P\left(\boldsymbol{Z}_{t} \mid \lambda^{(\boldsymbol{Z})}\right)=\sum_{m=1}^{M} w_{m} \mathcal{N}\left(\boldsymbol{Z}_{t} ; \boldsymbol{\mu}_{m}^{(\boldsymbol{Z})}, \mathbf{\Sigma}_{m}^{(\boldsymbol{X})}\right)
\]
where the weight of the \(m\)-th mixture weight is \(w_{m}\), the normal distribution with \(\boldsymbol{\mu}\) and \(\boldsymbol{\Sigma}\) is denoted as \(\mathcal{N}(\cdot ; \boldsymbol{\mu}, \boldsymbol{\Sigma})\) and the number of mixture component is \(M\). The mean vector \(\boldsymbol{\mu}_{m}^{(\boldsymbol{Z})}\) and the covariance matrix \(\boldsymbol{\Sigma}_{m}^{(\boldsymbol{X})}\) of the \(m\)-th mixture component can be written as
\[
\boldsymbol{\mu}_{m}^{(\mathbf{Z})}=\left[\begin{array}{l}
\boldsymbol{\mu}_{m}^{(X)} \\
\boldsymbol{\mu}_{m}^{(\boldsymbol{Y})}
\end{array}\right], \quad \boldsymbol{\Sigma}_{m}^{(\mathbf{Z})}=\left[\begin{array}{cc}
\boldsymbol{\Sigma}_{m}^{(X X)} & \boldsymbol{\Sigma}_{m}^{(X Y)} \\
\boldsymbol{\Sigma}_{m}^{(\boldsymbol{Y X})} & \boldsymbol{\Sigma}_{m}^{(Y Y)}
\end{array}\right],
\]
where \(\boldsymbol{\mu}_{m}^{(\boldsymbol{X})}\) and \(\boldsymbol{\mu}_{m}^{(\boldsymbol{Y})}\) are the mean vector of the \(m\)-th mixture component for the source and that for target, respectively. The matrices \(\boldsymbol{\Sigma}_{m}^{(X X)}\) and \(\boldsymbol{\Sigma}_{m}^{(Y Y)}\) are the covariance matrix of the \(m\)-th mixture component for the source and that for target, respectively. The matrices \(\boldsymbol{\Sigma}_{m}^{(X Y)}\) and \(\boldsymbol{\Sigma}_{m}^{(Y X)}\) are the cross-covariance matrix of the \(m\)-th mixture component for the source and that for target, respectively.
A time sequence of the converted feature vectors can be determined based on maximization of the likelihood function:
\[
\begin{aligned}
\hat{\boldsymbol{y}} & =\underset{\boldsymbol{y}}{\operatorname{argmax}} P\left(\boldsymbol{Y} \mid \boldsymbol{X}, \boldsymbol{\lambda}^{(\boldsymbol{Z})}\right) \\
& =\underset{\boldsymbol{y}}{\operatorname{argmax}} \sum_{\text {all } \boldsymbol{m}} P\left(\boldsymbol{m} \mid \boldsymbol{X}, \boldsymbol{\lambda}^{(Z)}\right) P\left(\boldsymbol{Y} \mid \boldsymbol{X}, \boldsymbol{m}, \boldsymbol{\lambda}^{(Z)}\right) \\
& \approx \underset{\boldsymbol{y}}{\operatorname{argmax}} P\left(\hat{\boldsymbol{m}} \mid \boldsymbol{X}, \boldsymbol{\lambda}^{(Z)}\right) P\left(\boldsymbol{Y} \mid \boldsymbol{X}, \hat{\boldsymbol{m}}, \boldsymbol{\lambda}^{(Z)}\right) \\
& =\underset{\boldsymbol{y}}{\operatorname{argmax}} \prod_{t=1}^{T} P\left(\hat{m}_{t} \mid \boldsymbol{X}_{t}, \boldsymbol{\lambda}^{(Z)}\right) P\left(\boldsymbol{Y}_{t} \mid \boldsymbol{X}, \hat{m}_{t}, \boldsymbol{\lambda}^{(Z)}\right),
\end{aligned}
\]
where \(\boldsymbol{m}=\left\{m_{1}, m_{2}, \ldots, m_{t}, \ldots, m_{T}\right\}\) is a mixture component sequence, \(\hat{\boldsymbol{m}}\) is the sumoptimum mixture component sequence determined by
\[
\hat{\boldsymbol{m}}=\arg \max P\left(\boldsymbol{m} \mid \boldsymbol{X}, \lambda^{(Z)}\right) .
\]

The \(m\)-th mixture component weight \(P\left(m \mid \boldsymbol{X}_{t}, \boldsymbol{\lambda}^{(\boldsymbol{Z})}\right)\) and the \(m\)-th conditional probability distribution \(P\left(\boldsymbol{Y}_{t} \mid \boldsymbol{X}, m, \boldsymbol{\lambda}^{(Z)}\right)\) at frame \(t\) are given by
\[
\begin{gathered}
P\left(m \mid \boldsymbol{X}_{t}, \lambda^{(Z)}\right)=\frac{w_{m} \mathcal{N}\left(\boldsymbol{X}_{t} ; \boldsymbol{\mu}_{m}^{(\boldsymbol{X})}, \boldsymbol{\Sigma}_{m}^{(X X)}\right)}{\sum_{n=1}^{M} w_{n} \mathcal{N}\left(\boldsymbol{X}_{t} ; \boldsymbol{\mu}_{n}^{(\boldsymbol{X})}, \mathbf{\Sigma}_{n}^{(\boldsymbol{X X})}\right)}, \\
P\left(\boldsymbol{Y}_{t} \mid \boldsymbol{X}, m, \lambda^{(Z)}\right)=\mathcal{N}\left(\boldsymbol{Y}_{t} ; \boldsymbol{E}_{m, t}^{(\boldsymbol{Y})}, \boldsymbol{D}_{m}^{(\boldsymbol{Y})}\right),
\end{gathered}
\]
where
\[
\begin{aligned}
& \boldsymbol{E}_{m, t}^{(\boldsymbol{Y})}=\boldsymbol{\mu}_{m}^{(Y)}+\boldsymbol{\Sigma}_{m}^{(\mathbf{Y X})} \boldsymbol{\Sigma}_{m}^{(X X)^{-1}}\left(\boldsymbol{X}_{t}-\boldsymbol{\mu}_{m}^{(\boldsymbol{X})}\right), \\
& \boldsymbol{D}_{m}^{(\boldsymbol{Y})}=\boldsymbol{\Sigma}_{m}^{(\mathbf{Y Y})}+\boldsymbol{\Sigma}_{m}^{(\boldsymbol{Y X})} \boldsymbol{\Sigma}_{m}^{(X X)^{-1}} \boldsymbol{\Sigma}_{m}^{(\boldsymbol{X Y})} .
\end{aligned}
\]

The converted static feature vector sequence \(\hat{\boldsymbol{y}}\) under the constraint of \(\boldsymbol{Y}=\boldsymbol{W} \boldsymbol{y}\) is given by
\[
\hat{\boldsymbol{y}}=\left(\boldsymbol{W}^{\top} \boldsymbol{D}_{\hat{m}}^{(Y)^{-1}} \boldsymbol{W}\right)^{-1} W^{\top} \boldsymbol{D}_{\hat{m}}^{(Y)^{-1}} \boldsymbol{E}_{\hat{m}}^{(Y)},
\]
where
\[
\begin{aligned}
\boldsymbol{E}_{\hat{\boldsymbol{m}}}^{(\boldsymbol{Y})} & =\left[\begin{array}{llllll}
\boldsymbol{E}_{\hat{m}_{1}, 1}^{(Y) \top} & \boldsymbol{E}_{\hat{m}_{2}, 2}^{(Y) \top} & \ldots & \boldsymbol{E}_{\hat{m}_{t}, t}^{(Y) T} & \ldots & \boldsymbol{E}_{\hat{m}_{T}, T}^{(Y) \top}
\end{array}\right]^{\top}, \\
\boldsymbol{D}_{\hat{\boldsymbol{m}}}^{(Y)} & =\left[\begin{array}{llllll}
\boldsymbol{D}_{\hat{m}_{1}}^{(Y)} & \boldsymbol{D}_{\hat{m}_{2}}^{(Y)} & & & & \mathbf{0} \\
& & \ddots & & & \\
& & & \boldsymbol{D}_{\hat{m}_{t}}^{(Y)} & & \\
& & & & \ddots & \\
\mathbf{0} & & & & & \boldsymbol{D}_{\hat{m}_{T}}^{(Y)}
\end{array}\right]
\end{aligned}
\]

To cope with the over-smoothing problem of the converted features, \(v c\) can also carry out the conversion considering GV. The GV \(\boldsymbol{v}(\boldsymbol{y})\) of the target static feature vectors \(\boldsymbol{y}\) is defined as
\[
\begin{aligned}
\boldsymbol{v}(\boldsymbol{y}) & =[v(1), v(2), \ldots, v(d), \ldots, v(D)]^{\top} \\
v(d) & =\frac{1}{T} \sum_{t=1}^{T}\left(y_{t}(d)-\bar{y}(d)\right)^{2} \\
\bar{y}(d) & =\frac{1}{T} \sum_{t=1}^{T} y_{t}(d)
\end{aligned}
\]
where \(y_{t}(d)\) is the \(d\)-th component of \(y_{t}\). The GV \(\boldsymbol{v}(\boldsymbol{y})\) is assumed to be normally distributed with mean vector \(\mu^{(v)}\) and the covariance matrix \(\Sigma^{(v \nu)}\) :
\[
\begin{aligned}
P\left(v(y) \mid \lambda^{(\boldsymbol{v})}\right) & =\mathcal{N}\left(\boldsymbol{v}(\boldsymbol{y}) ; \boldsymbol{\mu}^{(v)}, \boldsymbol{\Sigma}^{(v)}\right), \\
\lambda^{(\boldsymbol{v})} & =\left\{\boldsymbol{\mu}^{(v)}, \boldsymbol{\Sigma}^{(v)}\right\} .
\end{aligned}
\]

A time sequence of the converted feature vectors considering GV can be determined as follows:
\[
\begin{aligned}
\hat{\boldsymbol{y}} & =\underset{\boldsymbol{y}}{\operatorname{argmax}} P\left(\boldsymbol{Y} \mid \boldsymbol{X}, \boldsymbol{\lambda}^{(\boldsymbol{Z})}, \boldsymbol{\lambda}^{(\boldsymbol{v})}\right) \\
& =\underset{\boldsymbol{y}}{\operatorname{argmax}} P\left(\boldsymbol{Y} \mid \boldsymbol{X}, \boldsymbol{\lambda}^{(\boldsymbol{Z})}\right)^{\omega} P\left(\boldsymbol{v}(\boldsymbol{y}) \mid \boldsymbol{\lambda}^{(\boldsymbol{v})}\right) \\
& \approx \underset{\boldsymbol{y}}{\operatorname{argmax}}\left\{P\left(\hat{\boldsymbol{m}} \mid \boldsymbol{X}, \boldsymbol{\lambda}^{(Z)}\right) P\left(\boldsymbol{Y} \mid \boldsymbol{X}, \hat{\boldsymbol{m}}, \boldsymbol{\lambda}^{(Z)}\right)\right\}^{\omega} P\left(\boldsymbol{v}(\boldsymbol{y}) \mid \boldsymbol{\lambda}^{(\boldsymbol{(})}\right)
\end{aligned}
\]
where \(\omega\) is the weight for controlling the balance between the two likelihoods. The approximated log-likelihood function can be introduced as
\[
\mathcal{L}=\log \left[\left\{P\left(\hat{\boldsymbol{m}} \mid \boldsymbol{X}, \lambda^{(Z)}\right) P\left(\boldsymbol{Y} \mid \boldsymbol{X}, \hat{\boldsymbol{m}}, \lambda^{(Z)}\right)\right\}^{\omega} P\left(\boldsymbol{v}(\boldsymbol{y}) \mid \boldsymbol{\lambda}^{(\boldsymbol{v})}\right)\right] .
\]

The converted parameter trajectory can be updated iteratively using the first derivative of \(\mathcal{L}\) given by
\[
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial \boldsymbol{y}} & =\omega\left(-\boldsymbol{W}^{\top} \boldsymbol{D}_{\hat{\boldsymbol{m}}}^{(\boldsymbol{Y}}{ }^{-1} \boldsymbol{W} \boldsymbol{y}+\boldsymbol{W}^{\top} \boldsymbol{D}_{\hat{\boldsymbol{m}}}^{(\boldsymbol{Y}-1} \boldsymbol{E}_{\hat{\boldsymbol{m}}}^{(Y)}\right)+\left[\boldsymbol{v}_{1}^{\prime \top}, \boldsymbol{v}_{2}^{\prime \top}, \ldots, \boldsymbol{v}_{t}^{\prime \top}, \ldots, \boldsymbol{v}_{T}^{\prime \top}\right]^{\top}, \\
\boldsymbol{v}_{t}^{\prime} & =\left[v_{t}^{\prime}(1), v_{t}^{\prime}(2), \ldots, v_{t}^{\prime}(d), \ldots, v_{t}^{\prime}(D)\right]^{\top}, \\
v_{t}^{\prime}(d) & =-\frac{2}{T} \boldsymbol{c}_{v}^{(d)^{\top}}\left(\boldsymbol{v}(\hat{\boldsymbol{y}})-\boldsymbol{\mu}_{\boldsymbol{v}}\right)\left(\hat{y}_{t}(d)-\overline{\hat{y}}(d)\right),
\end{aligned}
\]
where \(\boldsymbol{c}_{v}^{(d)^{\top}}\) is the \(d\)-th column vector of \(\boldsymbol{\Sigma}^{(v v)^{-1}}\).

\section*{OPTIONS}
\begin{tabular}{|c|c|c|c|}
\hline -1 & \(L_{1}\) & dimension of source feature vector & [25] \\
\hline -n & \(N_{1}\) & order of source feature vector & [ \(L_{1}-1\) ] \\
\hline -L & \(L_{2}\) & dimension of target feature vector & [ \(L_{1}\) ] \\
\hline -N & \(\mathrm{N}_{2}\) & order of target feature vector & [ \(L_{2}-1\) ] \\
\hline -m & \(M\) & number of mixture components of GMM & [16] \\
\hline -d & \(\left(f n \mid d_{0}\left[d_{1} \ldots\right]\right)\) & \(f n\) is the file name of the parameters \(w^{(n)}(\tau)\) used when evaluating the dynamic feature vector. It is assumed that the number of coefficients to the left and to the right are the same. Therefore, the number of coefficients must be odd. Instead of entering the file name \(f n\), the coefficients(which compose the file \(f n\) ) can be directly inputted from the command line. & [N/A] \\
\hline -r & \(N_{R} W_{1}\left[W_{2}\right]\) & This option is used when \(N_{R}\)-th order dynamic parameters are used and the weighting coefficients \(w^{(n)}(\tau)\) are evaluated by regression. \(N_{R}\) can be made equal to 1 or 2 . The variables \(W_{1}\) and \(W_{2}\) represent the widths of the first and second order regression coefficients, respectively. The first and second order regression coefficients at frame \(t\) are evaluated likewise delta command. & [N/A] \\
\hline
\end{tabular}
```

-g gvfile
-e e
gvfile is the file name of GV statistics of the target static feature vectors. gvfile must contain the mean vector and diagonal components of covariance matrix of the Gaussian distribution of the GV. small value added to diagonal component of co- [0.0] variance

```

\section*{EXAMPLE}

In the following example, the source and target features (24-th order Mel-cepstrum coefficients) and dynamic features are extracted from the file source.raw and the file target.raw of raw (short) format. These extracted features are automatically aligned and concatenated by \(d t w\) command, which can carry out dynamic time warping. The GMM of the joint features is trained and its parameters are saved as source_target.gmm.
```

x2x +sf < source.raw | frame -l 400 -p 80 | \}
window -l 400 -L 1024 -w 0 | \}
mcep -1 1024 -m 24 -a 0.42 | \}
delta -m 24 -r $11>$ source.mcep.delta
x2x +sf < target.raw | frame -l 400 -p 80 | \}
window -1 400 -L 1024 -w $0 \mid \$
mcep -1 1024 -m 24 -a 0.42 | \}
delta -m $24-\mathrm{r} 11>$ target.mcep.delta
dtw -l 50 -p 5 -n 2 target.mcep.delta < source.mcep.delta | \}
gmm -1 100 -m 2 -f > source_target.gmm

```

Using the source_target.gmm and the source features extracted from the file source_test.raw, under the same analysis condition above, the GMM-based spectral parameter conversion can be performed by \(v c\) command and the converted target static features are saved as target_test.mcep.
```

x2x +sf < source_test.raw | frame -l 400 -p 80 | \
window -1 400 -L 1024 -w 0 | \
mcep -1 1024 -m 24 -a 0.42 | \
vc -1 25 -m 2 -r 1 1 source_target.gmm \
> target_test.mcep

```

Finally, using the target_test.mcep, the waveform can be synthesized as target_test.raw.
```

excite -p 80 target.pitch | \
mlsadf -m 24 -p 80 -a 0.42 -P 5 target_test.mcep | \
x2x +fs -o > target_test.raw

```

The target.pitch must be prepared in advance. Usually, the target \(F_{0}\) can be obtained by a linear transform in a log-domain, from a log-scaled \(F_{0}\) of the source speaker [26].

This transform can be realized by using pitch, sopr and vstat command. In this example, especially, it can be obtained from source test.raw.

\section*{NOTICE}

When using -d option to specify filename of delta coefficients,the number of coefficients must be odd.

\section*{SEE ALSO}
delta, dtw, gimm, pitch, sopr, vstat

NAME
vopr - execute vector operations

\section*{SYNOPSIS}
\[
\begin{gathered}
\text { vopr }[-\mathbf{l} L][-\mathbf{n} N][-\mathbf{i}][-\mathbf{a}][-\mathrm{s}][-\mathbf{m}][-\mathbf{d}][- \text { ATAN2 }][-\mathbf{A M}][-\mathbf{G M}] \\
\quad[-\mathbf{g t}][-\mathbf{g e}][-\mathbf{l t}][-\mathrm{le}][-\mathbf{e q}][-\mathbf{n e}][\text { file1 }][\text { infile }]
\end{gathered}
\]

\section*{DESCRIPTION}

This command performs vector operations in input files. In other words
file1 first vector file (if it is not assigned then stdin)
infile second vector file (if it is not assigned then stdin)
the first file gives the operation vectors \(\mathbf{a}\) and the second file gives the operation vectors b. The assigned operation is undertaken and the results are sent to the standard output.

Input and output data are in float format.
The undertaken action depends on the number of assigned files as well as the vector lengths as exemplified in the following.

If two files are assigned (when only one file is assigned, it is assumed that it corresponds to infile) then, depending on the vector sizes, the following actions are taken.
when \(L=1\)
file1 (stdin)
infile
Output (stdout)
\begin{tabular}{|c|c|c|c|c}
\hline\(a_{1}\) & \(a_{2}\) & \(\ldots\) & \(a_{i}\) & \(\ldots\) \\
\hline\(b_{1}\) & \(b_{2}\) & \(\ldots\) & \(b_{i}\) & \(\ldots\) \\
\hline \hline\(y_{1}\) & \(y_{2}\) & \(\ldots\) & \(y_{i}\) & \(\ldots\) \\
\hline
\end{tabular}

One data from one file corresponds to one data on the other file.
when \(L \geq 2\)
\begin{tabular}{lr|r|r|r} 
filel (stdin) & \(a_{11}, \ldots, a_{1 L}\) & \(a_{21}, \ldots, a_{2 L}\) & \(a_{31}, \ldots, a_{3 L}\) & \(a_{41}, \ldots\) \\
\cline { 2 - 5 } & infile & \(b_{1}, \ldots, b_{L}\) & & \multicolumn{2}{l}{} \\
\cline { 2 - 5 } & Output (stdout) & \(y_{11}, \ldots, y_{1 L}\) & \(y_{21}, \ldots, y_{2 L}\) & \(y_{31}, \ldots, y_{3 L}\)
\end{tabular}\(y_{41, \ldots} \begin{array}{lll} & \end{array}\)
In this case, the operation vector is read only once from infile, and the operations are recursively performed.

When the information related to \(\mathbf{a}\) and \(\mathbf{b}\) is contained in a single file, (if only one file is assigned, or if no file assignment is made), the -i option should be used and the action does not depend on the vector length.
when \(L \geq 1\)
file (stdin)
Output (stdout)


Input vectors are read from a single file.

\section*{OPTIONS}
\begin{tabular}{|c|c|c|}
\hline -1 & \(L\) length of vector & [1] \\
\hline -n & \(N\) order of vector & [L-1] \\
\hline -i & when a single file file is specified, the file contains a and b. & [FALSE] \\
\hline -a & addition \(y_{i}=a_{i}+b_{i}\) & [FALSE] \\
\hline -s & subtraction \(y_{i}=a_{i}-b_{i}\) & [FALSE] \\
\hline -m & multiplication \(y_{i}=a_{i} * b_{i}\) & [FALSE] \\
\hline -d & division \(y_{i}=a_{i} / b_{i}\) & [FALSE] \\
\hline -ATAN2 & \(\operatorname{atan} 2 y_{i}=\operatorname{atan} 2\left(b_{i}, a_{i}\right)\) & [FALSE] \\
\hline -AM & arithmetic mean \(y_{i}=\left(a_{i}+b_{i}\right) / 2\) & [FALSE] \\
\hline -GM & geometric mean \(y_{i}=\sqrt{a_{i} * b_{i}}\) & [FALSE] \\
\hline -c & choose smaller value & [FALSE] \\
\hline -f & choose larger value & [FALSE] \\
\hline -gt & decide "greater than" & [FALSE] \\
\hline -ge & decide "greater than or equal" & [FALSE] \\
\hline -lt & decide "less than" & [FALSE] \\
\hline -le & decide "less than or equal" & [FALSE] \\
\hline -eq & decide "equal to" & [FALSE] \\
\hline -ne & decide "not equal to" & [FALSE] \\
\hline
\end{tabular}

\section*{EXAMPLE}

The output file data.c contains addition of vectors in float format read from data.a and data.b:
```

vopr -a data.a data.b > data.c

```

In the following example, a sin wave is passed through a window with length 256 and coefficients given from data.w:
```

sin -p 30 -l 1000 | vopr data.w -l 256 -m | fdrw | xgr

```

Similar results as from the above example can be obtained using the following: Here, it is considered that the contents of data.w correspond to a Blackman window:
\[
\text { sin -p } 30-11000 \text { | window | fdrw | xgr }
\]

For other examples, suppose data.a contains
\[
1,2,3,4,5,6,7
\]
in float format and data.b contains
\[
3,2,1,0,5,6,7
\]
in float format. In the following example, smaller scalar values can be taken from data.a and data.b, and the result is sent to data.c in float format.
```

vopr -c data.b < data.a > data.c

```

The output file data.c contains
\[
1,2,1,0,5,6,7
\]

When executing following command line,
vopr -ge data.b < data.a > data.c
the output file data.c contains:
\[
0.0,1.0,1.0,1.0,1.0,1.0,1.0
\]

On the other hand, when executing following command line,
vopr -gt data.b < data.a > data.c
the output file data.c contains:
\[
0.0,0.0,1.0,1.0,0.0,0.0,0.0
\]

Moreover, when executing following command line,
```

vopr -eq data.b < data.a > data.c

```
the output file data.c contains:
\[
0.0,1.0,0.0,0.0,1.0,1.0,1.0
\]

\section*{NOTICE}

When both -1 and -n are specified, latter argument is adopted.

\section*{SEE ALSO}

\section*{NAME}
\(\mathrm{vq}-\) vector quantization

\section*{SYNOPSIS}
\(\mathbf{v q} \quad[-\mathbf{l} L][-\mathbf{n} N][-\mathbf{q}]\) cbfile [infile]

\section*{DESCRIPTION}
\(v q\) uses vector quantization to compress vectors from infile (or standard input) according to the codebook cbfile, sending either codebook indexes or quantized vectors to standard output.
For each length \(L\) input vector
\[
x(0), x(1), \ldots, x(L-1)
\]
\(v q\) finds the codebook vector \(\boldsymbol{c}_{i}\) that minimizes the Euclidean distance
\[
d_{i}=\sum_{m=0}^{L-1}\left(x(m)-c_{i}(m)\right)^{2}
\]

Input data is in float format. If the -q option is given, the output is the code vector [ \(\left.c_{i}(0), c_{i}(1), \cdots, c_{i}(L-1)\right]\) in float format. If the -q option is not given, the output is the codebook index \(i\) in int format.

\section*{OPTIONS}
-l \(\quad L \quad\) length of vector
-n \(\quad N\) order of vector
-q output quantized vector
[FALSE]

\section*{EXAMPLE}

In this example, a sequence of vectors of length 26 is read from data. \(f\) in float format. Each vector is quantized using the codebook cbfile, and results are written to data.vq:
vq -q cbfile < data.f > data.vq

\section*{SEE ALSO}
ivq, msvq, imsvq, [bg

\section*{NAME}
vstat - vector statistics calculation

\section*{SYNOPSIS}
vstat \([-\mathbf{l} L][-\mathbf{n} N][-\mathbf{t} T][-\mathbf{c} C][-\mathbf{d}][-\mathbf{o} O][\) infile \(]\)

\section*{DESCRIPTION}
vstat calculates the mean and covariance of groups of vectors from infile (or standard input), sending the result to standard output.
For each group of \(T\) input vectors of length \(L\), vstat calculates the mean vector of length \(L\) and the \(L \times L\) covariance matrix. In other words, if the input data is:

then the output will be given by:

and the values of \(\boldsymbol{\mu}, \boldsymbol{\Sigma}\) can be obtained through the following:
\[
\begin{gathered}
\boldsymbol{\mu}=\frac{1}{N} \sum_{k=1}^{N} \boldsymbol{x} \\
\boldsymbol{\Sigma}=\frac{1}{N} \sum_{k=1}^{N} \boldsymbol{x} \boldsymbol{x}^{\prime}-\boldsymbol{\mu} \boldsymbol{\mu}^{\prime}
\end{gathered}
\]

If the -d option is given, the length \(L\) diagonal of the covariance matrix is outputted instead of the entire \(L \times L\) matrix.
If the -o 3 option is specified, vstat also calculates the confidence interval of the mean via Student's t-distribution for each dimension, i.e. for each dimension, the confidence interval can be estimated at the confidence level \(\alpha\) (\%) satisfying the following condition:
\[
t(\alpha, \phi) \geq\left|\frac{\mu(i)-m(i)}{\sqrt{\sigma \hat{(i)^{2} / L}}}\right|, \quad i=1,2, \ldots, L
\]
where \(t(\alpha, \phi)\) is the upper \(0.5(100-\alpha)\)-th percentile of the t-distribution with \(\phi\) degrees of freedom, \(m(i)\) is the population mean, \(\sigma \hat{(i)^{2}}\) is the unbiased variance. The confidence
level \(\alpha\) can be specified by the -c option. The upper and lower bounds \(u(i)\) and \(l(i)\) can be written as
\[
\begin{aligned}
& u(i)=\mu(i)+t(\alpha, L-1) \sqrt{\frac{\sigma \hat{(i)^{2}}}{L}} \\
& l(i)=\mu(i)-t(\alpha, L-1) \sqrt{\frac{\sigma \hat{\sigma}(i)^{2}}{L}}
\end{aligned}
\]

The order of the output is as follows.
\[
\overbrace{\mu(1), \ldots, \mu(L)}^{L}, \overbrace{u(1), \ldots, u(L)}^{L}, \overbrace{l(1), \ldots, l(L)}^{L}
\]

If the -o 4 option is specified, vstat outputs the median of input vectors of length \(L\). If the number of vectors is even number, vstat outputs the arithmetic mean of two vectors of center.

Also, input and output data are in float format.

\section*{OPTIONS}
-l \(\quad L\) length of vector
-n \(N\) order of vector
-t \(\quad T\) number of vector
-0 \(O\) output format
\[
\begin{array}{ll}
O=0 & \text { mean \& covariance } \\
O=1 & \text { mean } \\
O=2 & \text { covariance } \\
O=3 & \text { mean \& upper / lower bound of confidence interval } \\
& \text { via Student's t-distribution } \\
O=4 & \text { median }
\end{array}
\]
-c \(\quad\) Confidence level of confidence interval (\%)
-d diagonal covariance
-i output inverse covariance instead of covariance
-r output correlation instead of covariance

\section*{EXAMPLE}

The output file data.stat contains the mean and covariance matrix taken from the whole data in data.f read in float format.
vstat data.f > data.stat
In the example below, the mean of 15 -th order coefficients vector is taken for every group of 3 frames and sent to data.av:
```

vstat -l 15 -t 3 -o 1 data.f > data.av

```

The output file data.stat contains the mean and upper / lower bound of the confidence interval ( \(90 \%\) ) calculated via Student's t-distribution.
\[
\text { vstat -C 90.0 -o } 3 \text { data.f > data.stat }
\]

\section*{NOTICE}

If -d is specified, off-diagonal elements are suppressed.

\section*{SEE ALSO}
average, vsum

NAME
vsum - summation of vector

\section*{SYNOPSIS}
vsum \([-\mathbf{l} L][-\mathbf{n} N][-\mathbf{t} T][\) infile \(]\)

\section*{DESCRIPTION}
vsum calculates the vector sum of groups of \(T\) input vectors of length \(L\) or \(N\) from infile (or standard input), sending the result to standard output. That is, if the input data is given by

then the output is
\[
\overbrace{s(1), \ldots, s(L)}^{L}, \ldots
\]
, where \(s(n)\) can be written as
\[
s(n)=\sum_{k=1}^{T} a_{k}(n)
\]

Input and output data are in float format.

\section*{OPTIONS}
-l \(\quad L \quad\) length of vector
-n \(N\) order of vector
-t \(\quad T\) number of vector

\section*{EXAMPLE}

The output file data.sum contains the summation of the whole data in file data.f read in float format:
```

vsum data.f > data.sum

```

In this example, the norm of 10 -th order vectors are evaluated and written to data.n:
```

sopr data.f -P | vsum -t 10 | sopr -R > data.n

```

In the next example, 15 -th order coefficients vectors are read from data.f, the average for every 3 frames is evaluated, and output to data.av:
```

vsum -l 15 -t 3 data.f | sopr -d 3 > data.av

```

\section*{SEE ALSO}

NAME
wav2raw - wav (RIFF) to raw

\section*{SYNOPSIS}
wav2raw \([-\) swab \(][-\mathbf{d} D][-\mathbf{n}][-\mathbf{N}][-\mathbf{L}][-\mathbf{R}][+\) type \(][\) infile \(]\)

\section*{DESCRIPTION}
wav2raw converts file format from wav to raw.

\section*{OPTIONS}

\begin{tabular}{llll} 
c & char (1 byte) & C & unsigned char (1 byte) \\
s & short (2 bytes) & S & unsigned short (2 bytes) \\
i3 & int ( 3 bytes) & I3 & unsigned int ( 3 bytes) \\
i & int (4 bytes) & I & unsigned int (4 bytes) \\
l & long (4 bytes) & L & unsigned long (4 bytes) \\
f & float (4 bytes) & d & double (8 bytes) \\
a & ascii & &
\end{tabular}

\section*{EXAMPLE}

In the following example, the file data.wav is converted to data.raw and normalized with the maximum value. The output will be saved in the same directory as data.wav unless the \(-d\) option is given:
```

wav2raw -N data.wav

```

\section*{SEE ALSO}

NAME
wavjoin - join two monaural WAV files

\section*{SYNOPSIS}
wavjoin \([-\mathbf{i} I][-\mathbf{o} O]\)

\section*{DESCRIPTION}
wavjoin makes a stereo WAV file by joining two monaural WAV files.

\section*{OPTIONS}
-i I Input WAV files or directories
\(\rightarrow 0\) Output WAV file or directory

\section*{EXAMPLE}

In the following command, wavjoin joins the monaural WAV files file0.wav and file 1.wav and outputs the stereo WAV file fileO file1.wav.
```

wavjoin -i file0.wav file1.wav -o file0_file1.wav

```

If input directories are specified, wavjoin joins all the WAV files that have common names between the directories.
```

wavjoin -i input_directory0 input_directory1 -o output_directory

```

\section*{NOTICE}
wavjoin does not distinguish between small and capital letters of the file extension. The first input WAV file or directory is related to channel 0 , and the other is related to channel 1.

\section*{SEE ALSO}
raw2wav, wavsplit

NAME
wavsplit - split a stereo WAV file

\section*{SYNOPSIS}
wavsplit \([-\mathbf{i} I][-\mathbf{o l} O]\)

\section*{DESCRIPTION}
wavsplit splits a stereo WAV file into two monaural WAV files.

\section*{OPTIONS}
-i I Input WAV file or directory
-o \(O\) Output WAV files or directories

\section*{EXAMPLE}

In the following command, the stereo wav file file.wav is split into two monaural WAV files file_channel0.wav and file_channell.wav.
```

wavsplit -i file.wav -o file_channel0.wav file_channel1.wav

```

If an input directory is specified, wavsplit splits all the WAV files in the directory. When the two output directories are given as follows, wavsplit outputs the monaural wav files separately for each channel. The output file names are the same as the input one.
```

wavsplit -i input_directory -o output_directory0 output_directory1

```

If an output directory is specified, wavsplit suffixes a channel number to the output file name. For example, file.wav in input_directory is split into two WAV files file_0.wav and file_l.wav in output_directory
```

wavsplit -i input_directory -o output_directory

```

\section*{NOTICE}
wavsplit does not distinguish between small and capital letters of the file extension. The first output WAV file or directory is related to channel 0 , and the other is related to channel 1.

\section*{SEE ALSO}

NAME
window - data windowing

\section*{SYNOPSIS}
window \(\quad\left[-\mathbf{l} L_{1}\right]\left[-\mathbf{L} L_{2}\right][-\mathbf{n} N][-\mathbf{w} W][\) infile \(]\)

\section*{DESCRIPTION}
window multiplies, on an element-by-element basis, length \(L\) input vectors from infile (or standard input) by a specified windowing function, sending the result to standard output.
For the input data
\[
x(0), x(1), \ldots, x\left(L_{1}-1\right)
\]
and the windowing function
\[
w(0), w(1), \ldots, w\left(L_{1}-1\right)
\]
the output is calculated as follows:
\[
x(0) \cdot w(0), x(1) \cdot w(1), \ldots, x\left(L_{1}-1\right) \cdot w\left(L_{1}-1\right)
\]

If \(L_{2}\) is greater then \(L_{1}\), then 0 s are added to the output as follows.
\[
\underbrace{x(0) \cdot w(0), x(1) \cdot w(1), \ldots, x\left(L_{1}-1\right) \cdot w\left(L_{1}-1\right), 0, \ldots, 0}_{L_{2}}
\]

Input and output data are in float format.

\section*{OPTIONS}


\section*{EXAMPLE}

This example prints in the screen a sin wave function with period 20 after windowing it with a Blackman window:
\[
\text { sin -p } 20 \text { | window | fdrw | xgr }
\]

This example passes the excitation generated through a train pulse by a digital filter, applies a Blackman windowing function to it, evaluates the log magnitude spectrum through 512 points FFT, and plots the results on the screen:
\[
\begin{aligned}
& \text { train -p } 50 \mid \text { dfs -a } 10.9 \mid \text { window -1 } 50-\mathrm{L} 512 \mid \ \\
& \text { spec }-1512 \mid \text { fdrw | xgr }
\end{aligned}
\]

\section*{SEE ALSO}
fftrr, spec

NAME
x 2 x - data type transformation

\section*{SYNOPSIS}
\[
\mathbf{x} 2 \mathbf{x} \quad[+ \text { type } 1][+ \text { type } 2][\text { \% format }][+\mathbf{a N}][-\mathbf{r}]
\]

\section*{DESCRIPTION}
\(x 2 x\) converts data from standard input to a different data type, sending the result to standard output.

The input and output data type are specified by command line options as described below.

\section*{OPTIONS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{13}{*}{\[
\begin{aligned}
& \text { +type } 1 \\
& \text { +type } 2
\end{aligned}
\]} & \multicolumn{4}{|l|}{input data type} & \multirow[t]{3}{*}{[f] [type1]} \\
\hline & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{both options type 1,type 2 can be assigned. one of the options below.}} & \\
\hline & & & & & \\
\hline & & char (1 byte) & \multicolumn{3}{|l|}{C unsigned char (1 byte)} \\
\hline & & short (2 bytes) & \multicolumn{3}{|l|}{S unsigned short (2 bytes)} \\
\hline & & int (3 bytes) & \multicolumn{3}{|c|}{3 unsigned int (3 bytes)} \\
\hline & & int (4 bytes) & \multicolumn{3}{|l|}{I unsigned int (4 bytes)} \\
\hline & & long (4 bytes) & \multicolumn{3}{|l|}{L unsigned long (4 bytes)} \\
\hline & & long long (8 bytes) & \multicolumn{3}{|l|}{LE unsigned long long (8 bytes)} \\
\hline & & float (4 bytes) & \multicolumn{3}{|l|}{d double (8 bytes)} \\
\hline & & long double (12 bytes) & \multicolumn{3}{|c|}{ASCII} \\
\hline & & ASCII specifying the column number \(N\) & & & \\
\hline & & ype is converted from signed then no operation equal to the input file. & & to \(t_{2}\left(\right.\) type \(\left._{2}\right)\). if \(t_{2}\) is med, and the output & \\
\hline -r & & y rounding off when a eger & & er is substituted for & [FALSE] \\
\hline -0 & & minimum and maximu over the range of outp given, when the data typ ss will be aborted. & of ou data leng & put data type if input pe. if the -o option hs are different, the & [FALSE] \\
\hline +a\% format & & y output format similar & 'prin & ()', only if type 2 is & [\%g] \\
\hline
\end{tabular}

\section*{EXAMPLE}

The following example converts data in ASCII format read from data.asc into float format, and writes the output to data.f:
x2x +af < data.asc > data.f

This example reads data in float format from data.f, converts it to ASCII format, and sends the output to the screen:
\[
\text { x2x }+f a<d a t a . f
\]

For example, if the contents of data.f in float format are
\[
1,2,3,4,5,6,7
\]
then the following output is printed to the screen.
\[
\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5 \\
& 6 \\
& 7
\end{aligned}
\]

If for the same data in the example above, the number of columns is assigned:
\[
\mathrm{x} 2 \mathrm{x}+\mathrm{fa} 3<\operatorname{data.f}
\]
the output will be:
\begin{tabular}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & &
\end{tabular}

The output uses the printf command \%e format:
\[
\mathrm{x} 2 \mathrm{x}+\mathrm{fa} \% 9.4 \mathrm{e}<\text { data.f }
\]

In this example the total number of characters for each number is 11 , and the number of decimal points assigned to 4 .


By using -r option, the result can be rounded off. For example, suppose that the contents of data.f in float format are
\[
1.2,2.3,3.4,4.5,5.6,6.7,7.8
\]

By the following command line without -r option,
\[
x 2 x+f s<d a t a . f
\]
the result will be
\[
1,2,3,4,5,6,7
\]

This shows that the decimal points in data. \(f\) is suppressed. On the other hand, without -r option,
\[
\mathrm{x} 2 \mathrm{x}+\mathrm{fs}-\mathrm{r}<\text { data.f }
\]
the result will be
\[
1,2,3,5,6,7,8
\]

This shows that each data in data.f are rounded off.
In the following example, the result can be clipped by -o option.
\[
\begin{aligned}
& \text { echo '126 } 127 \text { 128-127-128-129' > data.ascii } \\
& \text { x2x +ac -o < data.ascii }
\end{aligned}
\]

The result will be:
\[
126,127,127,-127,-128,-128
\]
where 128 and -129 in data.ascii are clipped by the maximum and minimum of char type, that is, 127 and -128 , respectively.

\section*{SEE ALSO}
dmp

NAME
xgr - XY-plotter simulator for X-window system

\section*{SYNOPSIS}
\[
\begin{array}{cc}
\text { xgr } & {[-\mathrm{s} S][-\mathrm{l}][-\mathrm{rv}][-\mathbf{m}][-\mathrm{bg} B G][-\mathrm{hl} H L][-\mathrm{bd} B D]} \\
& {[-\mathbf{m s} M S][-\mathrm{g} G][-\mathbf{d} D][-\mathbf{t} T][\text { infile }]}
\end{array}
\]

\section*{DESCRIPTION}
\(x g r\) plots a graph from a sequence of FP5301 plotter commands, displaying the output on the screen in a new X window.

When the X window is created, the keyboard focus is initially assigned to that new window, which responds to a limited set of user interactions:
- Changing the window size truncates or expands the area in which the graph is displayed, but the graph remains the same size (i.e. it is not rescaled to fit the new window size).
- If the graph is larger than the window, the position within the window can be changed with "vi" cursor movement commands:
h: left scroll
j: down scroll
k : up scroll
l: right scroll
- To delete the window, type one of the following: "q","Ctrl-c","Ctrl-d"

\section*{OPTIONS}
\begin{tabular}{lll}
-s & \(S\) & shrink \\
-l & & landscape \\
-rv & & reverse mode \\
- & & monochrome display mode \\
\(\mathbf{- b g}\) & \(B G\) & background color \\
-hl & \(H L\) & highlight color \\
-bd & \(B D\) & border color \\
-ms & \(M S\) & mouse color \\
- & \(G\) & geometry \\
-d & \(D\) & display \\
-t & \(T\) & window title
\end{tabular}
[3.38667]
[FALSE]
[FALSE]
[FALSE]
[white]
[blue]
[blue]
[red]
[NULL]
[NULL]
[xgr]

\section*{EXAMPLE}

The following example uses fdrw to draw a graph based on data read from data.f, and sends the output to a X-Window environment:
```

fdrw < data.f | xgr

```

\section*{NOTICE}
- If the display server does not contain backing store function, then the hidden part of virtual screen is erased.
-To reduce the waiting time to display graphs, an image of virtual screen is copied to the memory. If the size assigned by the -g option is too small or if during the time the graph is being plotted another window is put above the virtual screen, a part of the virtual screen needs to be erased. The -s option is suggested whenever the size of the virtual screen should be reduced.

\section*{SEE ALSO}
fig, fldrw

\section*{NAME}
zcross - zero cross

\section*{SYNOPSIS}
zcross \(\quad[-\mathbf{l} L][-n][\) infile \(]\)

\section*{DESCRIPTION}
zcross determines the number of zero crossings within each length \(L\) input vector, sending the result to standard output as one float number for each input vector.
Input and output data are in float format.

\section*{OPTIONS}
-l \(L\) frame length
if \(L \leq 0\) then no data output.
-n normalized by frame length
[FALSE]

\section*{EXAMPLE}

Data in float format is read from data.f, a zero crossing rate is computed, and the results are written to data.zc:
zcross < data.f > data.zc

\section*{SEE ALSO}
frame, spec

NAME
zerodf - all zero digital filter for speech synthesis

\section*{SYNOPSIS}
zerodf [-m M][-p P][-i \(I][-\mathbf{t}][-\mathbf{k}]\) bfile [infile \(]\)

\section*{DESCRIPTION}
zerodf derives a standard-form FIR (all-zero) digital filter from the coefficients \(b(0), b(1), \ldots, b(M)\) in bfile and uses it to filter an excitation sequence from infile (or standard input) to synthesize speech data, sending the result to standard output.

Input and output data are in float format.
The transfer function \(H(z)\) of an FIR filter in standard form is
\[
H(z)=\sum_{m=0}^{M} b(m) z^{-m}
\]

\section*{OPTIONS}
\begin{tabular}{llll}
\(\mathbf{- m}\) & \(M\) & order of coefficients & {\([25]\)} \\
\(\mathbf{- p}\) & \(P\) & frame period & {\([100]\)} \\
\(\mathbf{- i}\) & \(I\) & interpolation period & [1] \\
\(\mathbf{- t}\) & & transpose filter & [FALSE] \\
\(\mathbf{- k}\) & & filtering without gain & [FALSE]
\end{tabular}

\section*{EXAMPLE}

In the following example, Excitation is generated from pitch information read in float format from data.pitch. It is then passed through a FIR filter with coefficients read from data.b, and the synthesized speech is written to data.syn:
```

excite < data.pitch | zerodf data.b > data.syn

```

\section*{SEE ALSO}
poledt, Imadt

\section*{REFERENCES}
[1] S. Imai and Y. Abe, "Spectral envelope extraction by improved cepstral method," Journal of IEICE, Vol.J62-A, No.4, pp.217-223, Apr. 1987. (in Japanese)
[2] S. Imai and C. Furuichi, "Unbiased estimation of log spectrum," Journal of IEICE, Vol.J70-A, No.3, pp.471-480, Mar. 1987. (in Japanese)
[3] S. Imai and C. Furuichi, "Unbiased estimator of \(\log\) spectrum and its application to speech signal processing," Signal Processing IV: Theory and Applications, Vol.1, pp.203-206, Elsevier, North-Holland, 1988.
[4] K. Tokuda, T. Kobayashi, S. Shiomoto, and S. Imai, "Adaptive cepstral analysis - Adaptive filtering based on cepstral representation —,"Journal of IEICE, Vol.J73-A, No.7, pp.12071215, July 1990. (in Japanese)
[5] K. Tokuda, T. Kobayashi, and S. Imai, "Adaptive cepstral analysis of speech," IEEE Trans. Speech and Audio Process., Vol.3, No.6, pp.481-488, Nov. 1995.
[6] K. Tokuda, T. Kobayashi, R. Yamamoto, and S. Imai, "Spectral estimation of speech based on generalized cepstral representation," Journal of IEICE, Vol.J72-A, No.3, pp.457-465, Mar. 1989. (in Japanese)
[7] T. Kobayashi and S. Imai, "Spectral analysis using generalized cepstrum," IEEE Trans. Acoust., Speech, Signal Process., Vol.ASSP-32, No.5, pp.1087-1089, Oct. 1984.
[8] K. Tokuda, T. Kobayashi, and S. Imai, "Generalized cepstral analysis of speech - a unified approach to LPC and cepstral method," Proc. ICSLP-90, pp.37-40, Nov. 1990.
[9] T. Fukada, K. Tokuda, T. Kobayashi, and S. Imai, "A study on adaptive generalized cepstral analysis," IEICE Spring National Convention, A-150, p.150, Mar. 1990. (in Japanese)
[10] K. Tokuda, T. Kobayashi, T. Fukada, H. Saito, and S. Imai, "Spectral estimation of speech based on mel-cepstral representation," Journal of IEICE, Vol.J74-A, No.8, pp.1240-1248, Aug. 1991. (in Japanese)
[11] K. Tokuda, T. Kobayashi, T. Fukada, and S. Imai, "Adaptive mel-cepstral analysis of speech," Journal of IEICE, Vol.J74-A, No.8, pp.1249-1256, Aug. 1991. (in Japanese)
[12] T. Fukada, K. Tokuda, T. Kobayashi, and S. Imai, "An adaptive algorithm for mel-cepstral analysis of speech," Proc. ICASSP-92, pp.137-140, Mar. 1992.
[13] K. Tokuda, T. Kobayashi, K. Chiba, and S. Imai, "Spectral estimation of speech by melgeneralized cepstral analysis," Journal of IEICE, Vol.J75-A, No.7, pp.1124-1134, July 1992. (in Japanese)
[14] K. Tokuda, T. Kobayashi, T. Masuko, and S. Imai, "Mel-generalized cepstral analysis - a unified approach to speech spectral estimation," Proc. ICSLP-94, pp.1043-1046, Sep. 1994.
[15] T. Wakako, K. Tokuda, T. Masuko, T. Kobayashi, and T. Kitamura, "Speech spectral estimation based on expansion of \(\log\) spectrum by arbitrary basis functions,", Journal of IEICE, Vol.J82-D-II, No.12, pp.2203-2211, Dec. 1999. (in Japanese)
[16] C. Miyajima C, H. Watanabe, K. Tokuda, T. Kitamura, and S. Katagiri, "A new approach to designing a feature extractor in speaker identification based on discriminative feature extraction," Speech Communication, Vol.35, No.3, pp.203-218, Oct. 2001.
[17] S. Imai, "Log magnitude approximation (LMA) filter," Journal of IEICE, Vol.J63-A, No.12, pp.886-893, Dec. 1987. (in Japanese)
[18] T. Chiba, K. Tokuda, T. Kobayashi, and S. Imai, "Speech synthesis based on mel-generalized cepstral representation," IEICE Spring National Convention, A-243, p.243, Mar. 1988. (in Japanese)
[19] S. Imai, "Cepstral analysis synthesis on the mel frequency scale," Proc. ICASSP-83, pp.9396, Apr. 1983.
[20] S. Imai, K. Sumita, and C. Furuichi, "Mel log spectrum approximation (MLSA) filter for speech synthesis," Journal of IEICE, Vol.J66-A, No.2, pp.122-129, Feb. 1983. (in Japanese)
[21] T. Kobayashi, S. Imai, and Y. Fukuda, "Mel generalized-log spectrum approximation (MGLSA) filter," Journal of IEICE, Vol.J68-A, No.6, pp.610-611, June 1985. (in Japanese)
[22] K. Koishida, G. Hirabayashi, K. Tokuda, and T. Kobayashi, "A 16kbit/s wideband CELPbased speech coder using mel-generalized cepstral analysis," IEICE Trans. Inf. and Syst., vol.E83-D, no.4, pp.876-883, Apr. 2000.
[23] K. Tokuda, T. Masuko, T. Yamada, T. Kobayashi, and S. Imai, "An algorithm for speech parameter generation from continuous mixture HMMs with dynamic features," Proc. EUROSPEECH-95, pp.757-760, Sep. 1995.
[24] D. Talkin, "A Robust Algorithm for Pitch Tracking (RAPT)," in Speech Coding \& Synthesis, W. B. Kleijn and K. K. Pailwal (Eds.), Elsevier, pp.495-518, 1995.
[25] A. Camacho, "SWIPE: A Sawtooth Waveform Inspired Pitch Estimator for Speech And Music," Ph.D. Thesis, University of Florida, 116p., 2007.
[26] T. Toda, Alan W. Black, and K. Tokuda, "Voice Conversion Based on Maximum-Likelihood Estimation of Spectral Parameter Trajectory," IEEE Trans. Audio, Speech, Language Process., Vol.15, No. 8, pp.2222-2235, Nov. 2007.
[27] B. Yegnanarayana, "Speech Analysis by Pole-Zero Decomposition of Short-Time Spectra," Signal Processing, Vol.3, pp.5-17, Jan. 1981.
[28] J-L. Gauvain and C-H.Lee, "Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov chains," IEEE Trans. Speech and Audio Processing, vol.2, pp.291-298,1994.

\section*{Block diagram of SPTK commands}

Mitch Bradley kindly provided us the following diagram to help users understand and remember the relationships between the SPTK commands and data representations.
\(\bigcirc \quad \begin{aligned} & \text { circles are data types or } \\ & \text { coefficient vector types }\end{aligned}\)


\section*{INDEX of TOPICS}
data operation
bcp, 10\(]\)
bcut, [12]
dmp, 36
fd, 45
merge, [13]
minmax, 153
raw2 wav, [180]
reverse, 18\(]\)
swab, 199
symmetrize, 200]
transpose, [202]
wav2raw, 225
wavjoin, 226
wavsplit, 227
x2x, 230
number operation
sopr, 192
vopr, 216
data processing
average, 8
cdist, 20
clip, [2]
delta, 29
histogram, 91
linear_intpl, 109
nan, 165
pca, 170
pcas, [17]
rmse, 182
snr, 190
vstat, 220
vsum, 223\(]\)
sampling rate transformation
ds, 41
us, 206
us 16, 208
uscd, 209
DA transformation
da, 23]
plotting graphs
fdrw, 47
fig, 57
glogsp, 70
grlogsp, 83]
gseries, 87
gwave, 89
psgr, [76
xgr, 233
signal generation
excite, 43
nrand, 168
ramp, [78
sin, 186
step, 198
train, 201
digital filter
df2, 33
dfs, 34
signal processing
acorr, 3\(]\)
dct, 25
decimate, 27
delay, 28
fft, 49
fft2, 50
fftcep, 53]
fftr, 54
fftr2, [5]
frame, 64
freqt, 65
grpdelay, 86
idct, 92
ifft, 94
ifft2, [95]
ifftr, 97
ignorm, 98
impulse, 99
interpolate, [10]
levdur, 107
lpc, ■4
norm0, 167
phase, 172
pitch, [174
root_pol, 1884
spec, 105
ulaw, 205
window, 228
zcross, [235
speech analysis and synthesis
excite, 43
frame, 64
pitch, [174
window, 228
speech analysis
acep, [1]
agcep, 7
amcep, 6
gcep, 68
mcep, [129]
mfcc , [33]
mgcep, [42]
smcep, 187
uels, [203]
speech parameter transformation
b2mc, 9
c2acr, 15
c2ir, 16
c2ndps, [7]
c2sp, 19
freqt, 65
gc2gc, 66
gnorm, 82
lpc2c, \(\mathbb{1 5}\)
lpc21sp, Ш7]
lpc2par, Ш1
1sp2lpc, [1]
1sp2sp, [122
lspcheck, 124
mc2b, [28]
\(\mathrm{mgc} 2 \mathrm{mgc}, \llbracket 36\)
mgc2mgclsp, 【38
mgc2sp, [140
mgclsp2mgc, 148
mgclsp2sp, 146
mlsacheck, 158
ndps2c, 166
par2lpc, 169
filters for speech synthesis
glsadf, [7]
lmadf, [1]
lspdf, [26
ltcdf, 127
mglsadf, 150
mlsadf, 161
poledf, 175
zerodf, 236
vector quantization
extract, 44
imsvq, 100
ivq, 102
lbg, 103
msvq, 164
vq, 219
parameter generation
mlpg, 155
others
bell, 14
echo2,42
dynamic time warping
dtw, 188
model training
gmm, [7]
probability calculation
gmmp, 80
voice conversion
vc, 210```


[^0]:    ${ }^{1}$ In this case the phase is not evaluated from the filter impulse response, but from the difference between the numerator and denominator phases

[^1]:    ${ }^{2}$ In this case the phase is not evaluated from the filter impulse response, the phase is evaluated from the difference between the numerator and denominator phases

