
F L E T C H E R T. P E N N E Y

M U LT I M A R K D O W N
U S E R ’ S G U I D E

Contents

MultiMarkdown User’s Guide 5

Introduction 7

The Philosophy Behind MultiMarkdown 11

Installation 15

How to Use MultiMarkdown 19

Syntax 31

“Hacking” MultiMarkdown 57

Known Issues 59

Things Yet to Be Done 61

More Information 63

Acknowledgements 65

4 fletcher t. penney

Release Notes 69

MultiMarkdown User’s Guide

Version 4.7.1
Revised 2015-03-09

Introduction

As the world goes multi-platform with all of the new mobile operating
systems, MultiMarkdown provides an easy way to share formatting
between all of my devices. It’s easy to learn (even for us mortals) and
immediately useful.

— David Sparks, MacSparky.com1 1 http://MacSparky.com/

What is Markdown?

To understand what MultiMarkdown is, you first should be familiar
with Markdown2. The best description of what Markdown is comes 2 http://daringfireball.net/projects/

markdown/from John Gruber’s Markdown web site:

Markdown is a text-to-HyperText Markup Language (HTML) con-
version tool for web writers. Markdown allows you to write using an
easy-to-read, easy-to-write plain text format, then convert it to struc-
turally valid XHTML (or HTML).

Thus, “Markdown” is two things: (1) a plain text formatting syntax;
and (2) a software tool, written in Perl, that converts the plain text
formatting to HTML. See the Syntax page for details pertaining to
Markdown’s formatting syntax. You can try it out, right now, using the
online Dingus.

The overriding design goal for Markdown’s formatting syntax is
to make it as readable as possible. The idea is that a Markdown-
formatted document should be publishable as-is, as plain text, without
looking like it’s been marked up with tags or formatting instructions.
While Markdown’s syntax has been influenced by several existing
text-to-HTML filters, the single biggest source of inspiration for Mark-
down’s syntax is the format of plain text email. — John Gruber3 3 http://daringfireball.net/projects/

markdown/

What is MultiMarkdown?

Markdown is great, but it lacked a few features that would allow it to
work with documents, rather than just pieces of a web page.

I wrote MultiMarkdown in order to leverage Markdown’s syntax,
but to extend it to work with complete documents that could ulti-
mately be converted from text into other formats, including complete

http://MacSparky.com/
http://MacSparky.com/
http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/

8 fletcher t. penney

HTML documents, LaTeX, PDF, ODF, or even (shudder) Microsoft
Word documents.

In addition to the ability to work with complete documents and
conversion to other formats, the Markdown syntax was lacking a
few other things. Michel Fortin added a few additional syntax fea-
tures when writing PHP Markdown Extra4. Some of his ideas were 4 http://www.michelf.com/projects/

php-markdown/extra/implemented and expanded on in MultiMarkdown, in addition to
including features not available in other Markdown implementations.
These features include tables, footnotes, citation support, image and
link attributes, cross-references, math support, and more.

John Gruber may disagree with me, but I really did try to stick
with his proclaimed vision whenever I added a new syntax format
to MultiMarkdown. The quality that attracted me to Markdown the
most was its clean format. Reading a plain text document written in
Markdown is easy. It makes sense, and it looks like it was designed
for people, not computers. To the extent possible, I tried to keep this
same concept in mind when working on MultiMarkdown.

I may or may not have succeeded in this. . . .
In the vein of Markdown’s multiple definitions, you can think of

MultiMarkdown as:

1. A program to convert plain text to a fully formatted document.

2. The syntax used in the plain text to describe how to convert it to a
complete document.

Why should I use MultiMarkdown?

Writing with MultiMarkdown allows you to separate the content and
structure of your document from the formatting. You focus on the
actual writing, without having to worry about making the styles of
your chapter headers match, or ensuring the proper spacing between
paragraphs. And with a little forethought, a single plain text docu-
ment can easily be converted into multiple output formats without
having to rewrite the entire thing or format it by hand. Even better,
you don’t have to write in “computer-ese” to create well formatted
HTML or LaTeX commands. You just write, MultiMarkdown takes
care of the rest.

For example, instead of writing:

<p>In order to create valid

HTML, you

need properly coded syntax that can be cumbersome for

“non-programmers” to write. Sometimes, you

just want to easily make certain words bold

http://www.michelf.com/projects/php-markdown/extra/
http://www.michelf.com/projects/php-markdown/extra/
http://www.michelf.com/projects/php-markdown/extra/

multimarkdown user’s guide 9

, and certain words italicized without

having to remember the syntax. Additionally, for example,

creating lists:</p>

should be easy

should not involve programming

You simply write:

In order to create valid [HTML], you need properly

coded syntax that can be cumbersome for

"non-programmers" to write. Sometimes, you just want

to easily make certain words **bold**, and certain

words *italicized* without having to remember the

syntax. Additionally, for example, creating lists:

* should be easy

* should not involve programming

[HTML]: http://en.wikipedia.org/wiki/HTML

Additionally, you can write a MultiMarkdown document in any
text editor, on any operating system, and know that it will be com-
patible with MultiMarkdown on any other operating system and
processed into the same output. As a plain text format, your docu-
ments will be safe no matter how many times you switch computers,
operating systems, or favorite applications. You will always be able
to open and edit your documents, even when the version of the soft-
ware you originally wrote them in is long gone.

These features have prompted several people to use MultiMark-
down in the process of writing their books, theses, and countless
other documents.

There are many other reasons to use MultiMarkdown, but I won’t
get into all of them here.

By the way — the MultiMarkdown web site is, of course, created
using MultiMarkdown. To view the MMD source for any page,
add .txt to the end of the URL. If the URL ends with /, then add
index.txt to the end instead. The main MultiMarkdown page, for
example, would be http://fletcherpenney.net/multimarkdown/
index.txt.

http://fletcherpenney.net/multimarkdown/index.txt
http://fletcherpenney.net/multimarkdown/index.txt

10 fletcher t. penney

What Are the Different Versions of MultiMarkdown?

The first real version of MultiMarkdown was version 2. It was a mod-
ification of the original Markdown.pl script. It worked fine, but was
slow when parsing longer documents. The plain text was converted
to HTML, and then XSLT was used to convert the HTML to other for-
mats (primarily LaTeX). Over time, maintaining the complicated nest
of regular expressions became more difficult, and a better approach
was needed.

MultiMarkdown 3 (aka peg-multimarkdown) was built using John
MacFarlane’s peg-markdown5 as a base. It was much faster than 5 https://github.com/jgm/peg-

markdownversion 2, and the underlying PEG (parsing expression grammar)
made things more reliable. There were still issues and limitations
(some inherited from peg-markdown, but most were my errors),
which lead to the development of version 4.

MultiMarkdown 4
6 was a complete rewrite, keeping only the PEG 6 http://github.com/fletcher/

MultiMarkdown-4and a few utility routines from MMD v3. This release fixed memory
leaks and other problems from earlier MMD releases; it is safe to use
in multithreaded applications and adds many new features. By far,
it’s the best version to date!

Where is this Guide Kept?

This guide has been rewritten with the following changes:

• The source is now in the gh_pages branch of the MultiMarkdown
project7. You can submit changes as a pull request, or by writing 7 https://github.com/fletcher/

MultiMarkdown-4me.

• You can access this information on the web at http://fletcher.github.io/
MultiMarkdown-4

• The source itself is a collection of MultiMarkdown text documents
that use the transclusion features to create a master document
from the individual source files. These documents can be viewed
in the browser as HTML, or downloaded as PDF or OpenDocu-
ment files.

https://github.com/jgm/peg-markdown
https://github.com/jgm/peg-markdown
https://github.com/jgm/peg-markdown
http://github.com/fletcher/MultiMarkdown-4
http://github.com/fletcher/MultiMarkdown-4
http://github.com/fletcher/MultiMarkdown-4
https://github.com/fletcher/MultiMarkdown-4
https://github.com/fletcher/MultiMarkdown-4
https://github.com/fletcher/MultiMarkdown-4
https://github.com/fletcher/MultiMarkdown-4
http://fletcher.github.io/MultiMarkdown-4
http://fletcher.github.io/MultiMarkdown-4

The Philosophy Behind MultiMarkdown

My vision for MultiMarkdown was inspired by my understanding of
what made Markdown so wonderful. Markdown is simple. It’s easy
to remember. It’s intuitive to read. Markdown avoids the “everything
but the kitchen sink” problem.

My goal for MultiMarkdown is that it should be useable for 80%
of the documents that 80% of people write. Obviously that is not a
precise estimate, but the idea is that most people can write most of
their documents using it. Some people can write everything in MMD.
Some people can write very little in MMD. MultiMarkdown (by
itself) would not be very good for writing a comic book, for example.
It’s perfect for writing a novel.

A central tenet of MultiMarkdown is that the focus is on content,
not presentation. I honestly couldn’t care whether you want to use
Arial, Helvetica, or Comic Sans for your masterpiece. The presenta-
tion/styling/appearance is for you to decide. You pick the fonts. You
pick the colors. What I care about with MultiMarkdown is that most
(not necessarily all) of the meaning of the document is represented —
this is a list, that is a table, this is a top-level heading, etc.

A well written MultiMarkdown document will look reasonably
good whether you output to HTML, LaTeX, OpenDocument, etc. It
might not look perfect. A page might break at an inopportune place.
The title page of a LaTeX document doesn’t have an exact analogy in
HTML. HTML doesn’t handle page breaks well.

If you’re writing your thesis, publishing a book, or submitting a
document to the board of directors — by all means write in Multi-
Markdown. Focus on the content and overall structure. And when
you’re ready, convert to your desired output format. Proofread. And
when you’re sure that you like what you’ve got, then focus on the
aesthetics. Insert a page break. Tweak fonts. Go wild. But do it in a
tool appropriate for the format you’re using. This might be a good
programmer’s text editor for HTML and CSS. It might be LyX8. It 8 http://www.lyx.org/

might be LibreOffice9. 9 http://www.libreoffice.org/

http://www.lyx.org/
http://www.lyx.org/
http://www.libreoffice.org/
http://www.libreoffice.org/

12 fletcher t. penney

The Purpose of MultiMarkdown

In the years since MultiMarkdown was first released, I’ve received
countless emails of all kinds. A group stands out that seems to point
to a philosophical difference between types of users.

Computers are wonderful for doing the tedious sorts of things that
humans tend to not enjoy and to suck at. For example, I don’t want
to have to add all the columns in a spreadsheet by hand. That’s what
computers are for. Conversely, I don’t want to read a novel written by
a computer (at least not yet. . .)

As applied to MultiMarkdown, it’s purpose is to handle the te-
dium of applying repetitive formatting rules to text. For example,
having to wrap every single paragraph in <p> tags for a web site is
really tedious. The computer should be able to handle that easily.

But the user should still understand why those <p> tags are nec-
essary. The goal of MultiMarkdown is not to say, “Don’t worry your
pretty little head about complicated things like HTML or LaTeX.” The
goal is to allow you to learn and appreciate things like HTML and
LaTeX without most of the tedium that goes along with marking up a
document by hand.

MultiMarkdown is not a magical “black box” that converts plain
text to HTML with a lot of hand-waving and “pay no attention to the
man behind the curtain.” Programs that use this approach tend to
result in crappy output (e.g. Microsoft products, most apps to create
web pages “for you”, etc.)

So when you’re trying to do something fancy, or trying to trouble-
shoot a problem, start at the end. Look at the HTML/LaTeX/whatever
that is generated and see what’s going on at a fundamental level.
Once you understand that, then look at what MultiMarkdown is
doing. I believe you’ll have an easier time solving problems, and
probably learn a thing or two along the way. . . .

Feature Requests

I often get feature requests. Some requests are really good ideas and
I implement them. Some are really good ideas and I don’t implement
them. Some, however, miss the point of MultiMarkdown entirely.

I completely understand that somewhere out there, somebody’s
life would be complete if MultiMarkdown had a feature that drew
a picture of a bunny after every 15th word of a MultiMarkdown
document. But that feature would be absolutely useless to everyone
else on the planet. Add enough of those sorts of features, and you
end up with Microsoft Word. Which I am sure is the only application
that some people are able to use, precisely because it draws bunnies,

multimarkdown user’s guide 13

and even lets you choose which color and breed of bunny to use.
And whether the bunny is left- or right-pawed.

I am not going to program MultiMarkdown to draw bunnies.
Instead, if there is something that you wish MultiMarkdown

would do, consider the following:

1. First, make sure the feature you want doesn’t already exist. Read
the documentation. Look at the Sample Gallery10. 10 https://github.com/fletcher/

MultiMarkdown-Gallery
2. If it’s not there, consider whether you can “hijack” an existing

feature. For example, I needed to create a PDF to print a book of
poetry. MMD didn’t have a “poetry” feature. But it did have code
blocks, which are essentially the same thing, except poetry doesn’t
usually use monospaced fonts. Voila, I used code blocks for all
of the poems, and then changed the LaTeX output to refrain from
using monospaced fonts when displaying code.

3. Still stuck? — ask for help. The discussion list11 is a great place to 11 https://groups.google.com/forum/
#!forum/multimarkdownget help, as is the support site12.
12 http://support.fletcherpenney.net/

4. But before requesting a new feature, honestly ask yourself how
many other people need it. Ask yourself why, if it’s such a great
idea, it hasn’t been implemented yet.

5. If your idea isn’t really useful to other people, then that makes it
the perfect opportunity to develop some new skills. Grab a copy of
the MultiMarkdown source, and start hacking away to add what
you want. Test it out. If it’s really great, share it on the discussion
list to let others use it. Convince everyone that it simply must be
added to the core source.

https://github.com/fletcher/MultiMarkdown-Gallery
https://github.com/fletcher/MultiMarkdown-Gallery
https://github.com/fletcher/MultiMarkdown-Gallery
https://groups.google.com/forum/#!forum/multimarkdown
https://groups.google.com/forum/#\mskip -\thinmuskip forum/multimarkdown
https://groups.google.com/forum/#\mskip -\thinmuskip forum/multimarkdown
http://support.fletcherpenney.net/
http://support.fletcherpenney.net/

Installation

You have several options for obtaining and installing MultiMark-
down:

• Binary installer – available for:

– Mac OS

– Windows

• Use a third party package installer:

– homebrew for Mac OS

• Compile from source – useful if you want to modify MMD’s be-
havior, or if there isn’t an available binary download for your
operating system

Mac OS

Installer

You can download the installers from the MMD website download13 13 http://fletcherpenney.net/
multimarkdown/download/page. You need the Mac Installer. Download it. Run it. Done.

If you use older tools that were designed for MultiMarkdown
version 3, you may need to use the Mac Support Installer. This is
also useful if you need the older XSLT based parsing tools.

If you plan on creating LaTeX documents, you should also down-
load the LaTeX Support Files14 and install them into the appropriate 14 https://github.com/fletcher/peg-

multimarkdown-latex-supportlocation for your system and LaTeX software.

Homebrew

You can use homebrew15 to install: 15 https://github.com/Homebrew/
homebrew

brew install multimarkdown

Or, if you want the latest updates between releases:

http://fletcherpenney.net/multimarkdown/download/
http://fletcherpenney.net/multimarkdown/download/
http://fletcherpenney.net/multimarkdown/download/
https://github.com/fletcher/peg-multimarkdown-latex-support
https://github.com/fletcher/peg-multimarkdown-latex-support
https://github.com/fletcher/peg-multimarkdown-latex-support
https://github.com/Homebrew/homebrew
https://github.com/Homebrew/homebrew
https://github.com/Homebrew/homebrew

16 fletcher t. penney

brew install --HEAD multimarkdown

(Note: I use the --HEAD version on my own machine.)

MacPorts

MacPorts16 has a package for MultiMarkdown: 16 https://www.macports.org/

sudo port install multimarkdown

I don’t maintain this package, and it will likely not point to the
latest version. I don’t recommend it.

*nix

Unix/Linux users should use the instructions for compiling from
source below.

Windows

The easiest way to install MMD on Windows is the MultiMarkdown-Windows

installer from the download17 page and run it. The installer is built 17 http://fletcherpenney.net/
multimarkdown/download/using software by BitRock18.
18 http://bitrock.com/

Just as with the Mac OS X version, the installer includes the
multimarkdown binary, as well as several convenience scripts.

You can use Windows Explorer to create shortcuts to the multimarkdown

binary, and adjust the properties to allow you to create “drag and
drop” versions of MMD as well.

You can also download a “Portable” version that can be run off
USB thumb drives, for example. It is also available on the down-
load19 page. 19 http://fletcherpenney.net/

multimarkdown/download/

Free BSD

If you want to compile manually, you should be able to follow the
directions for Linux below. However, apparently MultiMarkdown has
been put in the ports tree, so you can also use:

cd /usr/ports/textproc/multimarkdown

make install

(I have not tested this myself, and cannot guarantee that it works
properly.)

https://www.macports.org/
https://www.macports.org/
http://fletcherpenney.net/multimarkdown/download/
http://fletcherpenney.net/multimarkdown/download/
http://fletcherpenney.net/multimarkdown/download/
http://bitrock.com/
http://bitrock.com/
http://fletcherpenney.net/multimarkdown/download/
http://fletcherpenney.net/multimarkdown/download/
http://fletcherpenney.net/multimarkdown/download/
http://fletcherpenney.net/multimarkdown/download/

multimarkdown user’s guide 17

Compile From Source

Mac and *Nix Machines

• Download the source from the github20 web site: 20 https://github.com/fletcher/
MultiMarkdown-4

git https://github.com/fletcher/MultiMarkdown-4.git

• Update the submodules, including greg

git submodule init

git submodule update

• Compile:

make

• Run make test-all | less (or make test-all | grep failed for
a more concise version) to verify that the build is correct. One of
the tests is expected to fail (“Ordered and unordered lists”); the
rest should pass on all systems.

• make install (as root) will install the software

• make install-scripts will install the helper scripts for you
(e.g.mmd, mmd2tex, etc.)

• If you plan on creating LaTeX documents, you should also down-
load the LaTeX Support Files21 and install them into the appropri- 21 https://github.com/fletcher/peg-

multimarkdown-latex-supportate location for your system and LaTeX software.

MultiMarkdown includes a few other projects as submodules, but
the only one you need to actually compile the code is the greg soft-
ware. Once compiled, MultiMarkdown has no external dependencies
– the binary is self-contained. Therefore, it should basically compile
and run anywhere.

Windows

Windows users can obtain the code in the same way, but will need to
use their own compiler. The way I compile for Windows is actually
to use the make windows command running on a *nix system with
MinGW installed.

The instructions for peg-markdown22 demonstrate how to compile 22 https://github.com/jgm/peg-
markdowna package for Windows.

Otherwise, you’re on your own here.

https://github.com/fletcher/MultiMarkdown-4
https://github.com/fletcher/MultiMarkdown-4
https://github.com/fletcher/MultiMarkdown-4
https://github.com/fletcher/peg-multimarkdown-latex-support
https://github.com/fletcher/peg-multimarkdown-latex-support
https://github.com/fletcher/peg-multimarkdown-latex-support
https://github.com/jgm/peg-markdown
https://github.com/jgm/peg-markdown
https://github.com/jgm/peg-markdown

How to Use MultiMarkdown

There are several ways to use MultiMarkdown, depending on your
needs. You can use the multimarkdown command line tool, you can
use MultiMarkdown with several applications that support it directly,
or you can use a drag and drop approach.

Command Line Usage

First, verify that you have properly installed MultiMarkdown:

multimarkdown -v

If you don’t see a message telling you which version of Multi-
Markdown is installed, check out Troubleshooting.

To learn more about the command line options to MultiMark-
down:

multimarkdown -h

Once you have properly installed MultiMarkdown:

multimarkdown file.txt

will convert the plain text file file.txt into HTML output. To save
the results to a file:

multimarkdown file.txt > file.html

A shortcut to this is to use MultiMarkdown’s batch mode, which
will save the output to the same base filename that is input, with the
extension .html (or .tex for LaTeX output):

multimarkdown -b file.txt

20 fletcher t. penney

A benefit of batch mode is that you can process multiple files at
once:

multimarkdown -b file1.txt file2.txt file3.txt

If you want to create LaTeX output instead of HTML:

multimarkdown -t latex file.txt

For LyX:

multimarkdown -t lyx file.txt

For OPML:

multimarkdown -t opml file.txt

For RTF (RTF output is limited – check the output carefully to be
sure it’s ok for your needs):

multimarkdown -t rtf file.txt

And for an OpenDocument text file:

multimarkdown -t odf file.txt

There are also several convenience scripts included with Multi-
Markdown:

mmd file.txt

mmd2tex file.txt

mmd2opml file.txt

mmd2odf file.txt

These scripts run MultiMarkdown in batch mode to generate
HTML, LaTeX, OPML, or ODF files respectively. These scripts are
included with the Mac or Windows installers, and are available for
*nix in the scripts directory in the source project. They are intended
to be used as shortcuts for the most common command line options.

multimarkdown user’s guide 21

Command Line Options

There are several options when running MultiMarkdown from the
command line.

multimarkdown -h, multimarkdown --help

This shows a summary of how to use MultiMarkdown.

multimarkdown -v, multimarkdown --version

Displays the version of MultiMarkdown currently installed.

multimarkdown -o, multimarkdown --output=FILE

Directs the output to the specified file. By default, the output is
directed to stdout. The use of batch mode obviates the need to use
this option, but if you want to specify a different output filename it
can be handy.

multimarkdown -t html|latex|memoir|beamer|opml|odf|rtf|lyx|lyx-beamer

This options specified the format that MultiMarkdown outputs.
The default is html. If you use the LaTeX Mode metadata, then Mul-
tiMarkdown will automatically choose memoir or beamer as directed
without using these command line options. Using that metadata
will also allow the various convenience scripts to choose the correct
output format as well.

multimarkdown -b, multimarkdown --batch

Automatically redirects the output to a file with the same base
name as the input file, but with the appropriate extension based on
the output type. For example, multimarkdown -b file.txt would
output the HTML to file.html, and multimarkdown -b -t latex

file.txt would output to file.tex.

multimarkdown -c, multimarkdown --compatibility

Compatibility mode causes MultiMarkdown to output HTML that
is compatible with that output from the original Markdown. This
allows it to pass the original Markdown test suite. Syntax features

22 fletcher t. penney

that don’t exist in regular Markdown will still be output using the
regular MultiMarkdown output formatting.

multimarkdown -f, multimarkdown --full

The full option forces a complete document, even if it does not
contain enough metadata to otherwise trigger a complete document.

multimarkdown -s, multimarkdown --snippet

The snippet option forces the output of a “snippet”, meaning that
header and footer information is left out. This means that a LaTeX
document might not have enough information to be processed, for
example.

multimarkdown --process-html

This option tells MultiMarkdown to process the text included
within HTML tags in the source document. This can feature can also
be implemented on a tag-by-tag basis within the document itself,
such as <div markdown="1">.

multimarkdown -m, multimarkdown --metadata-keys

List all of the available metadata keys contained in a document,
one key per line.

multimarkdown -e "metakey", multimarkdown --extract "metakey"

The extract feature outputs the value of the specified metadata
key. This is used in my convenience scripts to help choose the proper
LaTeX output mode, and could be used in other circumstances as
well.

multimarkdown --random

Tell MultiMarkdown to use random identifier numbers for foot-
notes. Useful when you might combine multiple HTML documents
together, e.g. in a weblog.

multimarkdown --accept

multimarkdown --reject

multimarkdown user’s guide 23

multimarkdown --accept --reject

Tell MultiMarkdown whether to accept or reject changes in written
in CriticMarkup23 format within the document. Use both together 23 http://criticmarkup.com/

if you want to highlight the differences – this only works for HTML
output.

multimarkdown --smart

multimarkdown --nosmart

Tell MultiMarkdown whether to use “smart” typography, simi-
lar to John Gruber’s SmartyPants24 program, which was included 24 http://daringfireball.net/projects/

smartypants/in MultiMarkdown 2.0. This extension is turned on by default in
MultiMarkdown.

multimarkdown --notes

multimarkdown --nonotes

Tell MultiMarkdown whether to use footnotes (enabled by de-
fault).

multimarkdown --labels

multimarkdown --nolabels

Tell MultiMarkdown whether to add id attributes to headers in
HTML (enabled by default).

multimarkdown --mask

multimarkdown --nomask

Tell MultiMarkdown whether to mask email addresses when creat-
ing HTML (enabled by default).

multimarkdown --notes

Enables the use of footnotes and similar markup (glossary, cita-
tions). Enabled by default in MultiMarkdown.

Other options are available by checking out multimarkdown --help-all,
but the ones listed above are the primary options.

http://criticmarkup.com/
http://criticmarkup.com/
http://daringfireball.net/projects/smartypants/
http://daringfireball.net/projects/smartypants/
http://daringfireball.net/projects/smartypants/

24 fletcher t. penney

Advanced Mode

MultiMarkdown version 2.0 had to first convert the source file to
HTML, and then applied XSLT files to convert to the final LaTeX
format. Since MultiMarkdown 3.0 can create LaTeX directly, this
approach is no longer necessary.

The one benefit of that approach, however, was that it became
possible to perform a wide range of customizations on exactly how
the LaTeX output was created by customizing the XSLT files.

If you install the Support files on Mac or Linux, you can still use
the advanced XSLT method to generate LaTeX output. For the time
being, this approach doesn’t work with Windows, but it would be
fairly easy to create a batch script or perl script to implement this
feature on Windows.

Keep in mind, however, that because of the more advanced mech-
anism of handling LaTeX in MultiMarkdown 3.0, you can do a great
deal of customization without needing to use an XSLT file.

The mmd2tex-xslt script will convert a plain text file into LaTeX
that is virtually identical with that created by the regular LaTeX ap-
proach.

There are a few differences in the two approaches, however:

• Once a MultiMarkdown file is converted to HTML, it is impossi-
ble to tell whether the resulting HTML was generated by Multi-
Markdown, or if it was included as raw HTML within the source
document. So either way, it will be converted to the analagous La-
TeX syntax. The multimarkdown binary on its own will not convert
HTML into LaTeX.

• The whitespace that is generated will be different under certain
circumstances. Typically, this will result in one extra or one fewer
blank lines with the the XSLT approach. Generally this will not
be an issue, but when used with <!-- some comment --> it may
cause a newline to be lost.

• The default XSLT recognizes class="noxslt" when applied to
HTML entities, and will discard them from the output.

• An XSLT can only be applied to a complete HTML document, not
a “snippet”. Therefore, if you want to use the XSLT method, your
file must have metadata that triggers a complete document (i.e.
any metadata except “quotes language” or “base header level”).

• Using XSL to process an HTML file will “de-obfuscate” any email
addresses that were obfuscated by MultiMarkdown.

multimarkdown user’s guide 25

Recommendations

I recommend that you become familiar with the “basic” approach
to using MultiMarkdown before trying to experiment with XSLT.
The basic approach is faster, and easier, and the results can still be
customized quite a bit.

Then you can experiment with modifying XSLT to further cus-
tomize your output as needed.

If you have XSLT files that you used in MultiMarkdown 2.0, you
will likely need to modify them to recognize the HTML output gen-
erated by MultiMarkdown 3.0. You can use the default XSLT files as a
guide to what is different.

Mac OS X Applications

There are several applications that have built-in support for Multi-
Markdown, or that can easily use it with a plug-in.

Using MultiMarkdown With MultiMarkdown Composer

MultiMarkdown Composer25 is my commercial text editor designed 25 http://multimarkdown.com/

from the ground up around the MultiMarkdown (and Markdown)
syntax. It contains a great deal of features to make writing, editing,
and exporting MultiMarkdown documents easier than ever before.
I certainly recommend it, but since I created it, and it’s not free, you
may believe me to biased. So search the internet to see what people
are saying, then check it out.

Using MultiMarkdown with TextMate

If you want to run MultiMarkdown from directly within TextMate26, 26 http://macromates.com/

you should install my MultiMarkdown bundle27. This is a modified 27 https://github.com/fletcher/
markdown.tmbundleversion of the original Markdown bundle for TextMate that includes

better support for MultiMarkdown.
This bundle will work with MultiMarkdown 2, or with MultiMark-

down 3/4 if you install the Mac Support Installer files (available from
the downloads page28). 28 http://fletcherpenney.net/

multimarkdown/download/

Using MultiMarkdown with Scrivener

Scrivener29 is a great program for writers using Mac OS X. It includes 29 http://www.literatureandlatte.com/

built in support for MultiMarkdown. If you want to use MultiMark-
down 3/4 with Scrivener, you need to install the Support files in ∼/
Library/Application Support/MultiMarkdown. The Mac Support
Installer is available from the downloads page30 and will install these 30 http://fletcherpenney.net/

multimarkdown/download/

http://multimarkdown.com/
http://multimarkdown.com/
http://macromates.com/
http://macromates.com/
https://github.com/fletcher/markdown.tmbundle
https://github.com/fletcher/markdown.tmbundle
https://github.com/fletcher/markdown.tmbundle
http://fletcherpenney.net/multimarkdown/download/
http://fletcherpenney.net/multimarkdown/download/
http://fletcherpenney.net/multimarkdown/download/
http://www.literatureandlatte.com/
http://www.literatureandlatte.com/
http://fletcherpenney.net/multimarkdown/download/
http://fletcherpenney.net/multimarkdown/download/
http://fletcherpenney.net/multimarkdown/download/

26 fletcher t. penney

files for you.

Drag and Drop

You can use the Mac OS X drag and drop applications to allow
you to convert MultiMarkdown to other formats by dragging and
dropping files in the Finder. They are available from the down-
load31 page, or by running make drop from the command line in 31 http://fletcherpenney.net/

multimarkdown/download/the multimarkdown source directory.

MultiMarkdown and Finder “Quick Look”

Starting in Mac OS 10.5, the Finder has the ability to show a “Quick
Look” preview of the contents of a file. I have a Quick Look gener-
ator that allows the Finder to preview the contents of a MultiMark-
down text file (or OPML file) as an HTML preview.

I recommend using the latest (closed-source) version available for
download32. It contains advanced features that are not available in 32 http://multimarkdown.com/

download/the open source version.
Source code for the older version is available for download from

github33. 33 https://github.com/fletcher/MMD-
QuickLook

Using MultiMarkdown in Windows

You can use the same command line approach with Windows as
described previously. While there aren’t drag and drop applications
per se for the Windows system, you can use Windows Explorer to
create links to the binary and specify and desired command line
options to change the default output format. This will effectively
allow you to create drag and drop applications for Windows.

MultiMarkdown and LaTeX

Of note LaTeX34 is a complex set of programs. MultiMarkdown 34 http://en.wikipedia.org/wiki/LaTeX

doesn’t include LaTeX in the installer — it’s up to the user to install a
working LaTeX setup on their machine if you want to use it.

What MultiMarkdown does is make it easier to generate docu-
ments using the LaTeX syntax. It should handle 80% of the docu-
ments that 80% of MultiMarkdown need. It doesn’t handle all cir-
cumstances, and sometimes you will need to hand code your LaTeX
yourself.

In those cases you have a few options. MultiMarkdown will pass
text included in HTML comments along to the LaTeX as raw output.
For example:

http://fletcherpenney.net/multimarkdown/download/
http://fletcherpenney.net/multimarkdown/download/
http://fletcherpenney.net/multimarkdown/download/
http://fletcherpenney.net/multimarkdown/download/
http://multimarkdown.com/download/
http://multimarkdown.com/download/
http://multimarkdown.com/download/
https://github.com/fletcher/MMD-QuickLook
https://github.com/fletcher/MMD-QuickLook
https://github.com/fletcher/MMD-QuickLook
http://en.wikipedia.org/wiki/LaTeX
http://en.wikipedia.org/wiki/LaTeX

multimarkdown user’s guide 27

<!-- This is raw \LaTeX \[{e}^{i\pi }+1=0 \] -->

You can also include your desired LaTeX code in a separate file
and link to it:

<!-- \input{somefile} -->

If you have questions about LaTeX itself, I can’t help. You’re wel-
come to send your question to the MultiMarkdown discussion list35, 35 https://groups.google.com/forum/

#!forum/multimarkdownand perhaps someone will be able to offer some assistance. But you
would be better off asking a group dedicated to LaTeX instead.

If the problem is that MultiMarkdown itself is generating invalid
LaTeX, then of course I want to know about it so I can fix it.

If you need more information about how to use LaTeX to process a
file into a PDF, check out the faq (??).

MultiMarkdown and OPML

MultiMarkdown is well suited to plain text files, but it can also be
useful to work on MultiMarkdown documents in an outliner or
mind-mapping application. For this, it is easy to convert back and
forth between OPML and plain text MultiMarkdown.

To convert from a text file to OPML:

multimarkdown -t opml -b file.txt

or:

mmd2opml file.txt

The resulting OPML file uses the headings to build the outline
structure, and puts the text within each section as a not for the cor-
responding level of the outline using the _note attribute. NOTE: not
all outliners support this attribute. On Mac OS X, OmniOutliner36 is 36 http://www.omnigroup.com/

applications/omnioutliner/a fabulous outliner that supports this field. If you’re into mind map-
ping software, iThoughts37 works on the iPad/iPhone and supports 37 http://www.ithoughts.co.uk/

import and export with OPML and the _note attribute.
To convert from OPML, you can use various commands in from

the MMD-Support38 package: 38 https://github.com/fletcher/MMD-
Support

opml2HTML file.opml

opml2mmd file.opml

https://groups.google.com/forum/#!forum/multimarkdown
https://groups.google.com/forum/#\mskip -\thinmuskip forum/multimarkdown
https://groups.google.com/forum/#\mskip -\thinmuskip forum/multimarkdown
http://www.omnigroup.com/applications/omnioutliner/
http://www.omnigroup.com/applications/omnioutliner/
http://www.omnigroup.com/applications/omnioutliner/
http://www.ithoughts.co.uk/
http://www.ithoughts.co.uk/
https://github.com/fletcher/MMD-Support
https://github.com/fletcher/MMD-Support
https://github.com/fletcher/MMD-Support

28 fletcher t. penney

opml2LaTeX file.opml

NOTE: These scripts require a working installation of xsltproc,
and the ability to run shell scripts. This should work by default on
most installations of Mac OS X or Linux, but will require these appli-
cations to be installed separately on Windows.

MultiMarkdown and OpenDocument

It is also possible to convert a MultiMarkdown text file into a word
processing document for OpenOffice.org39 or LibreOffice40. This 39 http://www.openoffice.org/

40 http://www.libreoffice.org/
download

file can then be converted by one of those applications into RTF, or a
Microsoft Word document, or many other file formats. (If you’re not
familiar with these applications, they are worth checking out. I don’t
understand why people use Microsoft Office any more. . .)

multimarkdown -b -t odf file.txt

or

mmd2odf file.txt

MultiMarkdown 2.0 had partial support for outputting an RTF file,
and could do it completely on Mac OS X by using Apple’s textutil

program. MMD 3 no longer directly supports RTF as an output for-
mat, but the Flat OpenDocument format is a much better option.

NOTE: LibreOffice can open these Flat OpenDocument files by de-
fault, but OpenOffice requires that you install the OpenDocument-Text-Flat-XML.jar

file available from the downloads41 page. To install it, create a new 41 https://github.com/fletcher/peg-
multimarkdown/downloadsdocument in OpenOffice (or open an existing one), then go to the

Tools->XML Filter Settings menu option. Use the “Open Package. . . ”
button to import the downloaded .jar file.

MultiMarkdown and RTF

I have made it clear in various places that RTF is a horrible format for
sharing documents. Seriously – it’s really bad.

That said, MultiMarkdown now offers direct conversion to RTF
documents (sort of). This export format is not complete. Tables don’t
work very well, and lists don’t work properly. Images are not sup-
ported.

If you have a very simple document, this may work just fine.
If you have a more complex document, I encourage you to use

http://www.openoffice.org/
http://www.libreoffice.org/download
http://www.openoffice.org/
http://www.libreoffice.org/download
http://www.libreoffice.org/download
https://github.com/fletcher/peg-multimarkdown/downloads
https://github.com/fletcher/peg-multimarkdown/downloads
https://github.com/fletcher/peg-multimarkdown/downloads

multimarkdown user’s guide 29

the OpenDocument export, and to use LibreOffice42 instead of a 42 http://www.libreoffice.org/

commercial Word-processor (you know what I’m talking about).
Even if you use LibreOffice to convert your OpenDocument to RTF,
you’ll get better results.

MultiMarkdown and LyX

LyX43 is is a document processor that seems to be a sort of hybrid 43 http://www.lyx.org/

between a markup language processor and a word processor. I’ll be
honest – I don’t quite get it, and I don’t use it.

That said, Charles Cowan has contributed code to the MultiMark-
down project that enables exporting of LyX documents directly. If
you have any trouble getting this to work, please use the MultiMark-
down issues page44 to get help. 44 https://github.com/fletcher/

MultiMarkdown-4/issuesSee his page45 for more information.
45 http://crcowan.github.io/
MultiMarkdown-4-LyX-Maintenance/Note: Because the LyX exporter is not maintained by me, it may

take some time for new features to be supported when exporting to
LyX.

Advanced Use

It is possible to use an XSLT file to customize the OpenDocument
output from MultiMarkdown. I suppose you could also write an
XSLT to convert OpenDocument into LaTeX, similar to the default
ones that convert HTML into LaTeX.

You can also create an XSLT that converts the OpenDocument out-
put and modifies it to incorporate necessary customizations. While
a little tricky to learn, XSLT files can be quite powerful and you’re
limited only by your imagination.

Limitations

There are several limitations to the OpenDocument Flat Text format:

• images are not fully supported — they work best if you specify a
length and a width in “fixed” units (not ‘%’), or do not specify any
dimensions.

• citations are not supported — I would like to be able to do some-
thing here, but I suspect you will need to use an external tool for
the time being

• math features are not supported, though I hope to be able to im-
plement this at some point in the future

http://www.libreoffice.org/
http://www.libreoffice.org/
http://www.lyx.org/
http://www.lyx.org/
https://github.com/fletcher/MultiMarkdown-4/issues
https://github.com/fletcher/MultiMarkdown-4/issues
https://github.com/fletcher/MultiMarkdown-4/issues
http://crcowan.github.io/MultiMarkdown-4-LyX-Maintenance/
http://crcowan.github.io/MultiMarkdown-4-LyX-Maintenance/
http://crcowan.github.io/MultiMarkdown-4-LyX-Maintenance/

Syntax

Metadata

It is possible to include special metadata at the top of a MultiMark-
down document, such as title, author, etc. This information can then
be used to control how MultiMarkdown processes the document, or
can be used in certain output formats in special ways. For example:

Title: A Sample MultiMarkdown Document

Author: Fletcher T. Penney

Date: February 9, 2011

Comment: This is a comment intended to demonstrate

metadata that spans multiple lines, yet

is treated as a single value.

CSS: http://example.com/standard.css

The syntax for including metadata is simple.

• The metadata must begin at the very top of the document - no
blank lines can precede it. There can optionally be a --- on the
line before and after the metadata. The line after the metadata can
also be This is to provide better compatibility with YAML46, 46 http://www.yaml.org/

though MultiMarkdown doesn’t support all YAML metadata.

• Metadata consists of the two parts - the key and the value

• The metadata key must begin at the beginning of the line. It must
start with an ASCII letter or a number, then the following char-
acters can consist of ASCII letters, numbers, spaces, hyphens, or
underscore characters.

• The end of the metadata key is specified with a colon (‘:’)

• After the colon comes the metadata value, which can consist of
pretty much any characters (including new lines). To keep multi-
line metadata values from being confused with additional meta-
data, I recommend indenting each new line of metadata. If your

http://www.yaml.org/
http://www.yaml.org/

32 fletcher t. penney

metadata value includes a colon, it must be indented to keep it
from being treated as a new key-value pair.

• While not required, I recommend using two spaces at the end of
each line of metadata. This will improve the appearance of the
metadata section if your document is processed by Markdown
instead of MultiMarkdown.

• Metadata keys are case insensitive and stripped of all spaces
during processing. This means that Base Header Level, base
headerlevel, and baseheaderlevel are all the same.

• Metadata is processed as plain text, so it should not include Multi-
Markdown markup. It is possible to create customized XSLT files
that apply certain processing to the metadata value, but this is not
the default behavior.

• After the metadata is finished, a blank line triggers the beginning
of the rest of the document.

Metadata “Variables”

You can substitute the value for a metadata key in the body of a
document using the following format, where foo and bar are the
keys of the desired metadata.

A Variable in a Heading [%foo]

A variable in the body [%bar].

“Standard” Metadata keys

There are a few metadata keys that are standardized in MultiMark-
down. You can use any other keys that you desire, but you have to
make use of them yourself.

My goal is to keep the list of “standard” metadata keys as short as
possible.

Author

This value represents the author of the document and is used in
LaTeX, ODF, and RTF documents to generate the title information.

multimarkdown user’s guide 33

Affiliation

This is used to enter further information about the author — a link to
a website, the name of an employer, academic affiliation, etc.

Base Header Level

This is used to change the top level of organization of the document.
For example:

Base Header Level: 2

Introduction

Normally, the Introduction would be output as <h1> in HTML,
or \part{} in LaTeX. If you’re writing a shorter document, you
may wish for the largest division in the document to be <h2> or
\chapter{}. The Base Header Level metadata tells MultiMarkdown
to change the largest division level to the specified value.

This can also be useful when combining multiple documents.
Base Header Level does not trigger a complete document.
Additionally, there are “flavors” of this metadata key for various

output formats so that you can specify a different header level for
different output formats — e.g. LaTeX Header Level, HTML Header

Level, and ODF Header Level.
If you are doing something interesting with File Transclusion

(section), you can also use a negative number here. Since metadata
is not used when a file is “transcluded”, this allows you to use a
different level of headings when a file is processed on its own.

Biblio Style

This metadata specifies the name of the BibTeX style to be used, if
you are not using natbib.

BibTeX

This metadata specifies the name of the BibTeX file used to store
citation information. Do not include the trailing ‘.bib’.

Copyright

This can be used to provide a copyright string.

34 fletcher t. penney

CSS

This metadata specifies a URL to be used as a CSS file for the pro-
duced document. Obviously, this is only useful when outputting to
HTML.

Date

Specify a date to be associated with the document.

HTML Header

You can include raw HTML information to be included in the header.
MultiMarkdown doesn’t perform any validation on this data — it
just copies it as is.

As an example, this can be useful to link your document to a
working MathJax installation (not provided by me):

HTML header: <script type="text/javascript"

src="http://example.net/mathjax/MathJax.js">

</script>

Quotes Language

This is used to specify which style of “smart” quotes to use in the
output document. The available options are:

• dutch (or nl)

• english

• french (fr)

• german (de)

• germanguillemets

• swedish (sv)

The default is english if not specified. This affects HTML output.
To change the language of a document in LaTeX is up to the individ-
ual.

Quotes Language does not trigger a complete document.

multimarkdown user’s guide 35

LaTeX Author

Since MultiMarkdown syntax is not processed inside of metadata,
you can use the latex author metadata to override the regular au-
thor metadata when exporting to LaTeX.

This metadata must come after the regular author metadata if it is
also being used.

LaTeX Footer

A special case of the LaTeX Input metadata below. This file will be
linked to at the very end of the document.

LaTeX Input

When outputting a LaTeX document it is necessary to include various
directions that specify how the document should be formatted. These
are not included in the MultiMarkdown document itself — instead
they should be stored separately and linked to with \input{file}

commands.
These links can be included in the metadata section. The metadata

is processed in order, so I generally break my directives into a group
that need to go before my metadata, a group that goes after the meta-
data but before the document itself, and a separate group that goes at
the end of the document, for example:

latex input: mmd-memoir-header

Title: MultiMarkdown Example

Base Header Level: 2

latex mode: memoir

latex input: mmd-memoir-begin-doc

latex footer: mmd-memoir-footer

You can download the LaTeX Support Files47 if you want to output 47 https://github.com/fletcher/peg-
multimarkdown-latex-supportdocuments using the default MultiMarkdown styles. You can then

use these as examples to create your own customized LaTeX output.
This function should allow you to do almost anything you could

do using the XSLT features from MultiMarkdown 2.0. More impor-
tantly, it means that advanced LaTeX users do not have to learn XSLT
to customize their code as desired.

LaTeX Mode

When outputting a document to LaTeX, there are two special options
that change the output slightly — memoir and beamer. These options

https://github.com/fletcher/peg-multimarkdown-latex-support
https://github.com/fletcher/peg-multimarkdown-latex-support
https://github.com/fletcher/peg-multimarkdown-latex-support

36 fletcher t. penney

are designed to be compatible with the LaTeX classes of the same
names.

LaTeX Title

Since MultiMarkdown syntax is not processed inside of metadata,
you can use the latex title metadata to override the regular title
metadata when exporting to LaTeX.

This metadata must come after the regular title metadata if it is
also being used.

MMD Footer

The MMD Footer metadata is used to specify the name of a file that
should be appended to the end of the document using the File Tran-
sclusion (section) feature. This is useful for keeping a list of refer-
ences, abbreviations, footnotes, links, etc. all in a single file that can
be reused across multiple documents. If you’re building a big docu-
ment out of smaller documents, this allows you to use one list in all
files, without multiple copies being inserted in the master file.

ODF Header

You can include raw XML to be included in the header of a file out-
put in OpenDocument format. It’s up to you to properly format your
XML and get it working — MultiMarkdown just copies it verbatim to
the output.

Title

Self-explanatory.

Transclude Base

When using the File Transclusion (section) feature to “link” to other
documents inside a MultiMarkdown document, this metadata spec-
ifies a folder that contains the files being linked to. If omitted, the
default is the folder containing the file in question. This can be a
relative path or a complete path.

This metadata can be particularly useful when using MultiMark-
down to parse a text string that does not exist as a file on the com-
puter, and therefore does not have a parent folder (when using stdin

or another application that offers MultiMarkdown support). In this
case, the path must be a complete path.

multimarkdown user’s guide 37

Smart Typography

MultiMarkdown incorporates John Gruber’s SmartyPants48 tool in 48 http://daringfireball.net/projects/
smartypants/addition to the core Markdown functionality. This program converts

“plain” punctuation into “smarter” typographic punctuation.
Just like the original, MultiMarkdown converts:

• Straight quotes (" and ’) into “curly” quotes

• Backticks-style quotes (“this”) into “curly” quotes

• Dashes (-- and ---) into en- and em- dashes

• Three dots (...) become an ellipsis

MultiMarkdown also includes support for quotes styles other than
English (the default). Use the quotes language metadata to choose:

• dutch (nl)

• german(de)

• germanguillemets

• french(fr)

• swedish(sv)

This feature is enabled by default, but is disabled in compatibility

mode, since it is not part of the original Markdown. You can also use
the smart and nosmart command line options to control this feature.

Cross-References

An oft-requested feature was the ability to have Markdown automat-
ically handle within-document links as easily as it handled external
links. To this aim, I added the ability to interpret [Some Text][] as a
cross-link, if a header named “Some Text” exists.

As an example, [Metadata][] will take you to the section describ-
ing metadata (section).

Alternatively, you can include an optional label of your choosing
to help disambiguate cases where multiple headers have the same
title:

Overview [MultiMarkdownOverview]

http://daringfireball.net/projects/smartypants/
http://daringfireball.net/projects/smartypants/
http://daringfireball.net/projects/smartypants/

38 fletcher t. penney

This allows you to use [MultiMarkdownOverview] to refer to this
section specifically, and not another section named Overview. This
works with atx- or settext-style headers.

If you have already defined an anchor using the same id that is
used by a header, then the defined anchor takes precedence.

In addition to headers within the document, you can provide la-
bels for images and tables which can then be used for cross-references
as well.

Link and Image Attributes

Adding attributes to links and images has been requested for a long
time on the Markdown discussion list. I was fairly opposed to this, as
most of the proposals really disrupted the readability of the syntax.
I consider myself a “Markdown purist”, meaning that I took John’s
introduction to heart:

The overriding design goal for Markdown’s formatting syntax is
to make it as readable as possible. The idea is that a Markdown-
formatted document should be publishable as-is, as plain text, without
looking like it’s been marked up with tags or formatting instructions.
While Markdown’s syntax has been influenced by several existing
text-to-HTML filters, the single biggest source of inspiration for Mark-
down’s syntax is the format of plain text email.

Because there was not a syntax proposal that I felt fit this goal, I
was generally opposed to the idea.

Then, Choan C. Gálvez proposed49 a brilliantly simple syntax that 49 http://six.pairlist.net/pipermail/
markdown-discuss/2005-October/
001578.html

stayed out of the way. By simply appending the attributes to the link
reference information, which is already removed from the text itself,
it doesn’t disturb the readability.

For example:

This is a formatted ![image][] and a [link][] with attributes.

[image]: http://path.to/image "Image title" width=40px height=400px

[link]: http://path.to/link.html "Some Link" class=external

style="border: solid black 1px;"

This will generate width and height attributes for the image, and
a border around the link. And while it can be argued that it does
look “like it’s been marked up with tags [and] formatting instruc-
tions”, even I can’t argue too strongly against it. The link and the
title in quotes already look like some form of markup, and the the
additional tags are hardly that intrusive, and they offer a great deal

http://six.pairlist.net/pipermail/markdown-discuss/2005-October/001578.html
http://six.pairlist.net/pipermail/markdown-discuss/2005-October/001578.html
http://six.pairlist.net/pipermail/markdown-discuss/2005-October/001578.html
http://six.pairlist.net/pipermail/markdown-discuss/2005-October/001578.html

multimarkdown user’s guide 39

of functionality. They might even be useful in further functions (cita-
tions?).

The attributes must continue after the other link/image data, and
may contain newlines, but must start at the beginning of the line.
The format is attribute=value or attribute="multi word value".
Currently, MultiMarkdown does not attempt to interpret or make
any use of any of these attributes. Also, you can’t have a multiword
attribute span a newline.

Images

The basic syntax for images in Markdown is:

![Alt text](/path/to/img.jpg)

![Alt text](/path/to/img.jpg "Optional title")

![Alt text][id]

[id]: url/to/image "Optional title attribute"

In addition to the attributes you can use with links and images
(described in the previous section), MultiMarkdown also adds a few
additional things. If an image is the only thing in a paragraph, it is
treated as a block level element:

This image (![Alt text](/path/to/img.jpg))

is different than the following image:

![Alt text](/path/to/img.jpg)

The resulting HTML is:

<p>This image ()

is different than the following image:</p>

<figure>

<figcaption>Alt text</figcaption>

</figure>

40 fletcher t. penney

The first one would be an inline image. The second one (in HTML)
would be wrapped in an HTML figure element. In this case, the alt

text is also used as a figure caption, and can contain MultiMarkdown
syntax (e.g. bold, emph, etc.). The alt text is not specifically designed
to limit which MultiMarkdown is supported, but there will be limits
and block level elements aren’t supported.

Tables

Table Basics

MultiMarkdown has a special syntax for creating tables. It is gen-
erally compatible with the syntax used by Michael Fortin for PHP
Markdown Extra50 50 http://www.michelf.com/projects/

php-markdown/extra/Basically, it allows you to turn:

| | Grouping ||

First Header | Second Header | Third Header |

------------ | :-----------: | -----------: |

Content | *Long Cell* ||

Content | **Cell** | Cell |

New section | More | Data |

And more | With an escaped ’\|’ ||

[Prototype table]

into the following table (subsection 1).

Grouping
First Header Second Header Third Header

Content Long Cell
Content Cell Cell

New section More Data
And more With an escaped ‘|’

Table 1: Prototype table

Table Rules

The requirements are:

• There must be at least one | per line

• The “separator” line between headers and table content must
contain only |,-, =, :,., +, or spaces

• Cell content must be on one line only

http://www.michelf.com/projects/php-markdown/extra/
http://www.michelf.com/projects/php-markdown/extra/
http://www.michelf.com/projects/php-markdown/extra/
http://www.michelf.com/projects/php-markdown/extra/

multimarkdown user’s guide 41

• Columns are separated by |

• The first line of the table, and the alignment/divider line, must
start at the beginning of the line

Other notes:

• It is optional whether you have | characters at the beginning and
end of lines.

• The “separator” line uses ---- or ==== to indicate the line between
a header and cell. The length of the line doesn’t matter, but must
have at least one character per cell.

• To set alignment, you can use a colon to designate left or right
alignment, or a colon at each end to designate center alignment,
as above. If no colon is present, the default alignment of your
system is selected (left in most cases). If the separator line ends
with +, then cells in that column will be wrapped when exporting
to LaTeX if they are long enough.

• To indicate that a cell should span multiple columns, then simply
add additional pipes (|) at the end of the cell, as shown in the
example. If the cell in question is at the end of the row, then of
course that means that pipes are not optional at the end of that
row. . . . The number of pipes equals the number of columns the
cell should span.

• You can use normal Markdown markup within the table cells.

• Captions are optional, but if present must be at the beginning of
the line immediately preceding or following the table, start with
[, and end with]. If you have a caption before and after the table,
only the first match will be used.

• If you have a caption, you can also have a label, allowing you to
create anchors pointing to the table. If there is no label, then the
caption acts as the label

• Cells can be empty.

• You can create multiple <tbody> tags (for HTML) within a ta-
ble by having a single empty line between rows of the table. This
allows your CSS to place horizontal borders to emphasize differ-
ent sections of the table. This feature doesn’t work in all output
formats (e.g. RTF and OpenDocument).

42 fletcher t. penney

Limitations of Tables

• MultiMarkdown table support is designed to handle most tables
for most people; it doesn’t cover all tables for all people. If you
need complex tables you will need to create them by hand or with
a tool specifically designed for your output format. At some point,
however, you should consider whether a table is really the best
approach if you find MultiMarkdown tables too limiting.

• Native RTF support for tables is very limited. If you need more
complex tables, I recommend using the OpenDocument format,
and then using LibreOffice51 to convert your document to RTF. 51 http://www.libreoffice.org/

Footnotes

I have added support for footnotes to MultiMarkdown, using the
syntax proposed by John Gruber. Note that there is no official sup-
port for footnotes yet, so the output format may change, but the
input format sounds fairly stable.

To create a footnote, enter something like the following:

Here is some text containing a footnote.[^somesamplefootnote]

[^somesamplefootnote]: Here is the text of the footnote itself.

[somelink]:http://somelink.com

The footnote itself must be at the start of a line, just like links by
reference. If you want a footnote to have multiple paragraphs, lists,
etc., then the subsequent paragraphs need an extra tab preceding
them. You may have to experiment to get this just right, and please
let me know of any issues you find.

This is what the final result looks like:

Here is some text containing a footnote.52 52 Here is the text of the footnote itself.

You can also use “inline footnotes”:

Here is another footnote.[^This is the footnote itself]

Citations

I have included support for basic bibliography features in this version
of MultiMarkdown. Please give me feedback on ways to improve this
but keep the following in mind:

http://www.libreoffice.org/
http://www.libreoffice.org/

multimarkdown user’s guide 43

1. Bibliography support in MultiMarkdown is rudimentary. The
goal is to offer a basic standalone feature, that can be changed
using the tool of your choice to a more robust format (e.g. BibTeX,
CiteProc). My XSLT files demonstrate how to make this format
compatible with BibTeX, but I am not planning on personally
providing compatibility with other tools. Feel free to post your
ideas and tools to the wiki.

2. Those needing more detailed function sets for their bibliographies
may need customized tools to provide those services. This is a
basic tool that should work for most people. Reference librarians
will probably not be satisfied however.

To use citations in MultiMarkdown, you use a syntax much like
that for anchors:

This is a statement that should be attributed to

its source[p. 23][#Doe:2006].

And following is the description of the reference to be

used in the bibliography.

[#Doe:2006]: John Doe. *Some Big Fancy Book*. Vanity Press, 2006.

In HTML output, citations are indistinguishable from footnotes.
You are not required to use a locator (e.g. p. 23), and there are no

special rules on what can be used as a locator if you choose to use
one. If you prefer to omit the locator, just use an empty set of square
brackets before the citation:

This is a statement that should be attributed to its

source[][#Doe:2006].

There are no rules on the citation key format that you use (e.g.
Doe:2006), but it must be preceded by a #, just like footnotes use ˆ.

As for the reference description, you can use Markup code within
this section, and I recommend leaving a blank line afterwards to
prevent concatenation of several references. Note that there is no way
to reformat these references in different bibliography styles; for this
you need a program designed for that purpose (e.g. BibTeX).

If you want to include a source in your bibliography that was not
cited, you may use the following:

[Not cited][#citekey]

44 fletcher t. penney

The Not cited bit is not case sensitive.
If you are creating a LaTeX document, the citations will be in-

cluded, and natbib will be used by default. If you are not using Bib-
TeX and are getting errors about your citations not being compatible
with ‘Author-Year’, you can add the following to your documents
metadata:

latex input: mmd-natbib-plain

This changes the citation style in natbib to avoid these errors, and
is useful when you include your citations in the MultiMarkdown
document itself.

BibTeX

If you are creating a LaTeX document, and need a bibliography, then
you should definitely look into BibTeX53 and natbib54. It is beyond 53 http://www.bibtex.org/

54 http://merkel.zoneo.net/Latex/
natbib.php

the scope of this document to describe how these two packages work,
but it is possible to combine them with MultiMarkdown.

To use BibTeX in a MultiMarkdown document, you need to use the
BibTeX metadata (section) to specify where your citations are stored.

Since natbib is enabled by default, you have a choice between
using the \citep and \citet commands. The following shows how
this relates to the MultiMarkdown syntax used.

[#citekey] => ~\citep{citekey}

[#citekey][] => ~\citep{citekey}

[foo][#citekey] => ~\citep[foo]{citekey}

[foo\]\[bar][#citekey] => ~\citep[foo][bar]{citekey}

[#citekey;] => \citet{citekey}

[#citekey;][] => \citet{citekey}

[foo][#citekey;] => \citet[foo]{citekey}

[foo\]\[bar][#citekey;] => \citet[foo][bar]{citekey}

http://www.bibtex.org/
http://merkel.zoneo.net/Latex/natbib.php
http://www.bibtex.org/
http://merkel.zoneo.net/Latex/natbib.php
http://merkel.zoneo.net/Latex/natbib.php

multimarkdown user’s guide 45

Definition Lists

MultiMarkdown has support for definition lists using the same syn-
tax used in PHP Markdown Extra55. Specifically: 55 http://www.michelf.com/projects/

php-markdown/extra/

Apple

: Pomaceous fruit of plants of the genus Malus in

the family Rosaceae.

: An american computer company.

Orange

: The fruit of an evergreen tree of the genus Citrus.

becomes:

Apple Pomaceous fruit of plants of the genus Malus in the family
Rosaceae.

An american computer company.

Orange The fruit of an evergreen tree of the genus Citrus.

You can have more than one term per definition by placing each
term on a separate line. Each definition starts with a colon, and you
can have more than one definition per term. You may optionally have
a blank line between the last term and the first definition.

Definitions may contain other block level elements, such as lists,
blockquotes, or other definition lists.

Unlike PHP Markdown Extra, all definitions are wrapped in <p>

tags. First, I was unable to get Markdown not to create paragraphs.
Second, I didn’t see where it mattered - the only difference seems
to be aesthetic, and I actually prefer the <p> tags in place. Let me
know if this is a problem.

See the PHP Markdown Extra56 page for more information. 56 http://www.michelf.com/projects/
php-markdown/extra/

Abbreviations

MultiMarkdown includes support for abbreviations, as implemented
in Michel Fortin’s PHP Markdown Extra57. Basically, you define an 57 http://michelf.ca/projects/php-

markdown/extra/abbreviation using the following syntax:

*[HTML]: HyperText Markup Language

*[W3C]: World Wide Web Consortium

Then, wherever you use the words HTML or W3C in your document,
the abbr markup will be added:

http://www.michelf.com/projects/php-markdown/extra/
http://www.michelf.com/projects/php-markdown/extra/
http://www.michelf.com/projects/php-markdown/extra/
http://www.michelf.com/projects/php-markdown/extra/
http://www.michelf.com/projects/php-markdown/extra/
http://www.michelf.com/projects/php-markdown/extra/
http://michelf.ca/projects/php-markdown/extra/
http://michelf.ca/projects/php-markdown/extra/
http://michelf.ca/projects/php-markdown/extra/

46 fletcher t. penney

The HTML specification

is maintained by the W3C.

becomes:

The <abbr title="Hyper Text Markup Language">HTML</abbr> specification

is maintained by the <abbr title="World Wide Web Consortium">W3C</abbr>.

Here’s an example using HTML and World Wide Web Consortium
(W3C). The exact behavior will depend on which format you are
viewing this document in. Especially if we use HTML and W3C
again. (Remember that HTML has probably already been used if
you’re viewing a longer version of this document.)

As in PHP Markdown Extra, abbreviations are case-sensitive and
will work on multiple word abbreviations. In this case, MultiMark-
down is tolerant of different variations of whitespace between words.

Operation Tigra Genesis is going well.

*[Tigra Genesis]:

An abbreviation with an empty definition results in an omitted
title attribute.

There are a few limitations:

• The full name of the abbreviation is plain text only – no Multi-
Markdown markup will be processed.

• Abbreviations don’t do anything when exporting to ODF – there’s
not an equivalent structure there – it would have to be hand
coded. I may or may not get around to this, but pull requests
welcome. ;)

• When exporting to LaTeX, the acronym package is used; this means
that the first usage will result in full text (short), and subse-
quent uses will result in short.

Fenced Code Blocks

In addition to the regular indented code block that Markdown uses,
you can use “fenced” code blocks in MultiMarkdown. These code
blocks do not have to be indented, and can also be configured to be
compatible with a third party syntax highlighter. These code blocks
should begin with 3 to 5 backticks, an optional language specifier (if

multimarkdown user’s guide 47

using a syntax highlighter), and should end with the same number of
backticks you started with:

Demonstra t e Syntax H i g h l i g h t i n g i f you l i n k t o h i g h l i g h t . j s
h t t p : / / s o f t w a r e m a n i a c s . o rg / s o f t / h i g h l i g h t / en /
print " Hello , world !\n" ;
$a = 0 ;
while ($a < 10) {
print " $a . . . \ n" ;
$a ++;
}

I don’t recommend any specific syntax highlighter, but have used
the following metadata to set things up. It may or may not work for
you:

html header: <link rel="stylesheet" href="http://yandex.st/highlightjs/7.3/styles/default.min.css">

<script src="http://yandex.st/highlightjs/7.3/highlight.min.js"></script>

<script>hljs.initHighlightingOnLoad();</script>

Fenced code blocks are particularly useful when including another
file (File Transclusion (section)), and you want to show the source of
the file, not what the file looks like when processed by MultiMark-
down.

Math

MultiMarkdown 2.0 used ASCIIMathML58 to typeset mathematical 58 http://www1.chapman.edu/
∼jipsen/mathml/asciimath.htmlequations. There were benefits to using ASCIIMathML, but also some

disadvantages.
When rewriting for MultiMarkdown 3.0, there was no straightfor-

ward way to implement ASCIIMathML which lead me to look for
alternatives. I settled on using MathJax59. The advantage here is that 59 http://www.mathjax.org/

the same syntax is supported by MathJax in browsers, and in LaTeX.
This does mean that math will need to be entered into MultiMark-

down documents using the LaTeX syntax, rather than ASCIIMathML.
To enable MathJax support in web pages, you have to include a

link to an active MathJax installation — setting this up is beyond the
scope of this document, but it’s not too hard.

Here’s an example of the metadata setup, and some math:

latex input: mmd-article-header

Title: MultiMarkdown Math Example

latex input: mmd-article-begin-doc

latex footer: mmd-memoir-footer

http://www1.chapman.edu/~jipsen/mathml/asciimath.html
http://www1.chapman.edu/~jipsen/mathml/asciimath.html
http://www1.chapman.edu/~jipsen/mathml/asciimath.html
http://www.mathjax.org/
http://www.mathjax.org/

48 fletcher t. penney

HTML header: <script type="text/javascript"

src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">

</script>

An example of math within a paragraph --- \\({e}^{i\pi }+1=0\\)

--- easy enough.

And an equation on it’s own:

\\[{x}_{1,2}=\frac{-b\pm \sqrt{{b}^{2}-4ac}}{2a} \\]

That’s it.

Here’s what it looks like in action (if you’re viewing this document
in a supported format):

An example of math within a paragraph — eiπ + 1 = 0 — easy enough.

And an equation on it’s own:

x1,2 =
−b±

√
b2 − 4ac

2a

That’s it.

In addition to the \\[\\] and \\(\\) syntax, you can use LaTeX
style “dollar sign” delimiters:

An example of math within a paragraph --- ${e}^{i\pi }+1=0$

--- easy enough.

And an equation on it’s own:

$${x}_{1,2}=\frac{-b\pm \sqrt{{b}^{2}-4ac}}{2a}$$

That’s it.

In order to be correctly parsed as math, there must not be any
space between the $ and the actual math on the inside of the delim-
iter, and there must be space on the outside.

Superscripts and Subscripts

You can easily include superscripts and subscripts in MultiMark-
down as well:

multimarkdown user’s guide 49

This apartment has an area of 100m^2

One must consider the value of x~z

becomes

This apartment has an area of 100m2

One must consider the value of xz

The subscript must not contain any whitespace or punctuation.
More complicated exponents and subscripts can be delimited like

this:

y^(a+b)^

x~y,z~

y(a+b)

xy,z

Glossaries

MultiMarkdown has a feature that allows footnotes to be specified
as glossary terms. It doesn’t do much for XHTML documents, but
the XSLT file that converts the document into LaTeX is designed to
convert these special footnotes into glossary entries.

The glossary format for the footnotes is:

[^glossaryfootnote]: glossary: term (optional sort key)

The actual definition belongs on a new line, and can continue on

just as other footnotes.

The term is the item that belongs in the glossary. The sort key is
optional, and is used to specify that the term should appear some-
where else in the glossary (which is sorted in alphabetical order).

Unfortunately, it takes an extra step to generate the glossary when
creating a pdf from a latex file:

1. You need to have the basic.gst file installed, which comes with
the memoir class.

2. You need to run a special makeindex command to generate the
.glo file: makeindex -s ‘kpsewhich basic.gst‘ -o "filename.gls"

"filename.glo"

3. Then you run the usual pdflatex command again a few times.

50 fletcher t. penney

Alternatively, you can use the code below to create an engine file
for TeXShop (it belongs in ∼/Library/TeXShop/Engines). You can
name it something like MemoirGlossary.engine. Then, when process-
ing a file that needs a glossary, you typeset your document once with
this engine, and then continue to process it normally with the usual
LaTeX engine. Your glossary should be compiled appropriately. If
you use TeXShop60, this is the way to go. 60 http://www.uoregon.edu/∼koch/

texshop/Note: Getting glossaries to work is a slightly more advanced LaTeX
feature, and might take some trial and error the first few times.

#!/bin/

set path = ($path /usr/local/teTeX/bin/powerpc-apple-darwin-current

/usr/local/bin) # This is actually a continuation of the line above

set basefile = ‘basename "$1" .tex‘

makeindex -s ‘kpsewhich basic.gst‘ -o "${basefile}.gls" "${basefile}.glo"

CriticMarkup

What Is CriticMarkup?

CriticMarkup is a way for authors and editors to track changes to doc-
uments in plain text. As with Markdown, small groups of distinctive
characters allow you to highlight insertions, deletions, substitutions
and comments, all without the overhead of heavy, proprietary office
suites. http://criticmarkup.com/

CriticMarkup is integrated with MultiMarkdown itself, as well
as MultiMarkdown Composer61. I encourage you to check out the 61 http://multimarkdown.com/

web site to learn more as it can be a very useful tool. There is also a
great video showing CriticMarkup in use while editing a document
in MultiMarkdown Composer.

The CriticMarkup Syntax

The CriticMarkup syntax is fairly straightforward. The key thing to
remember is that CriticMarkup is processed before any other Multi-
Markdown is handled. It’s almost like a separate layer on top of the
MultiMarkdown syntax.

When editing in MultiMarkdown Composer, you can have Critic-
Markup syntax flagged in the both the editor pane and the preview
window. This will allow you to see changes in the HTML preview.

http://www.uoregon.edu/~koch/texshop/
http://www.uoregon.edu/~koch/texshop/
http://www.uoregon.edu/~koch/texshop/
http://criticmarkup.com/
http://multimarkdown.com/
http://multimarkdown.com/

multimarkdown user’s guide 51

When using CriticMarkup with MultiMarkdown itself, you have
four choices:

• Leave the CriticMarkup syntax in place (multimarkdown foo.txt)

• Accept all changes, giving you the “new” document (multimarkdown
-a foo.txt)

• Reject all changes, giving you the “original” document (multimarkdown
-r foo.txt)

• Attempt to show the changes as highlights. This only works in
HTML, and to use it you ask for the new and original document at
the same time (multimarkdown -a -r foo.txt)

CriticMarkup comments and highlighting are ignored when pro-
cessing.

Deletions from the original text:

This is {--is --}a test.

Additions:

This {++is ++}a test.

Substitutions:

This {~~isn’t~>is~~} a test.

Highlighting:

This is a {==test==}.

Comments:

This is a test{>>What is it a test of?<<}.

My philosophy on CriticMarkup

I view CriticMarkup as two things:

1. A syntax for documenting editing notes and changes, and for
collaborating amongst coauthors.

2. A means to display those notes/changes in the HTML output.

52 fletcher t. penney

I believe that #1 is a really great idea, and well implemented. #2 is
not so well implemented, largely due to the “orthogonal” nature of
CriticMarkup and the underlying Markdown syntax.

CM is designed as a separate layer on top of Markdown/MultiMarkdown.
This means that a Markdown span could, for example, start in the
middle of a CriticMarkup structure, but end outside of it. This means
that an algorithm to properly convert a CM/Markdown document to
HTML would be quite complex, with a huge number of edge cases to
consider. I’ve tried a few (fairly creative, in my opinion) approaches,
but they didn’t work. Perhaps someone else will come up with a
better solution, or will be so interested that they put the work in to
create the complex algorithm. I have no current plans to do so.

Additionally, there is a philosophical distinction between docu-
menting editing notes, and using those notes to produce a “finished”
document (e.g. HTML or PDF) that keeps those editing notes intact
(e.g. strikethroughs, highlighting, etc.) I believe that CM is incredibly
useful for the editing process, but am less convinced for the output
process (I know many others disagree with me, and that’s ok. And
to be clear, I think that what Gabe and Erik have done with Critic-
Markup is fantastic!)

There are other CriticMarkup tools besides MultiMarkdown and
MultiMarkdown Composer62, and you are more than welcome to use 62 http://multimarkdown.com/

them.
For now, the official MultiMarkdown support for CriticMarkup

consists of:

1. CriticMarkup syntax is “understood” by the MultiMarkdown
parser, and by MultiMarkdown Composer syntax highlighting.

2. When converting from MultiMarkdown text to an output format,
you can ignore CM formatting (probably not what you want to
do), accept all changes, or reject all changes (as above). These are
the preferred choices.

3. The secondary to choice, when exporting to HTML, is to attempt
to show the changes in the HTML output. Because the syntaxes
are orthogonal, this will not always work properly, and will not
always give valid HTML output.

Raw HTML

You can include raw (X)HTML within your document. Exactly what
happens with these portions depends on the output format. You can
also use the markdown attribute to indicate that MultiMarkdown pro-
cessing should be applied within the block level HTML tag. This is

http://multimarkdown.com/
http://multimarkdown.com/

multimarkdown user’s guide 53

in addition to the --process-html command line option that causes
MultiMarkdown processing to occur within all block level HTML
tags.

For example:

<div>This is *not* MultiMarkdown</div>

<div markdown=1>This *is* MultiMarkdown</div>

will produce the following without --process-html:

<div>This is *not* MultiMarkdown</div>

<div>This is MultiMarkdown</div>

and with --process-html:

<div>This is not MultiMarkdown</div>

<div>This is MultiMarkdown</div>

However, the results may be different than anticipated when out-
putting to LaTeX or other formats. Normally, block level HTML will
be ignored when outputting to LaTeX or ODF. The example above
would produce the following, leaving out the first <div> entirely:

This \emph{is} MultiMarkdown

And this with --process-html:

This is \emph{not} MultiMarkdown

This \emph{is} MultiMarkdown

You will also notice that the line breaks are different when out-
putting to LaTeX or ODF, and this can cause the contents of two
<div> tags to be placed into a single paragraph.

Raw LaTeX/OpenDocument/etc.

You can use HTML comments to include additional text that will
be included in the exported file without being changed. This can
be used for any export format, which means that each document
can only be configured for one export format at a time. In other

54 fletcher t. penney

words, it is highly unlikely that valid raw LaTeX will also be valid
OpenDocument source code.

This will be processed by *MultiMarkdown*.

<!-- This will not be processed by *MultiMarkdown -->

File Transclusion

File transclusion is the ability to tell MultiMarkdown to insert the
contents of another file inside the current file being processed. For
example:

This is some text.

{{some_other_file.txt}}

Another paragraph

If a file named some_other_file.txt exists, its contents will be
inserted inside of this document before being processed by Multi-
Markdown. This means that the contents of the file can also contain
MultiMarkdown formatted text.

If you want to display the contents of the file without processing it,
you can include it in a code block (you may need to remove trailing
newlines at the end of the document to be included):

This is some text

‘‘‘

{{relative/path/to/some_other_file.txt}}

‘‘‘

Another paragraph

Transclusion is recursive, so the file being inserted will be scanned
to see if it references any other files.

Metadata in the file being inserted will be ignored. This means
that the file can contain certain metadata when viewed alone that will
not be included when the file is transcluded by another file.

You can use the [Transclude Base] metadata to specify where
MultiMarkdown should look for the files to be included. All files
must be in this folder. If this folder is not specified, then MultiMark-

multimarkdown user’s guide 55

down will look in the same folder as the parent file.
Note: Thanks to David Richards for his ideas in developing sup-

port for this feature.

Wildcard Extensions

Sometimes you may wish to transclude alternate versions of a file
depending on your output format. Simply use the extension “.*”
to have MMD choose the proper version of the file (e.g. foo.tex,
foo.fodt, foo.html, etc.)

Insert a different version of a file here based on export format:

{{foo.*}}

Escaped newlines

Thanks to a contribution from Nicolas63, MultiMarkdown has an 63 https://github.com/njmsdk

additional syntax to indicate a line break. The usual approach for
Markdown is “space-space-newline” — two spaces at the end of the
line. For some users, this causes problems:

• the trailing spaces are typically invisible when glancing at the
source, making it easy to overlook them

• some users’ text editors modify trailing space (IMHO, the proper
fix for this is a new text editor. . .)

Nicolas submitted a patch that enables a new option that inter-
prets “\” before a newline as a marker that a line break should be
used:

This is a line.\

This is a new line.

To enable this feature, use the following option:

multimarkdown --escaped-line-breaks file.txt

If this option is not enabled, then the default behavior will be to
treat the newline as an escaped character, which results in it simply
appearing as a newline character in the output. This means that the
default behavior is the same as if the “\” is not in the source file.

https://github.com/njmsdk
https://github.com/njmsdk

“Hacking” MultiMarkdown

Multiple Formats

On some occasions, the same MultiMarkdown syntax is not ideal for
different output formats. For example, a link may need to be slightly
different for the HTML version than for the LaTeX version (since
LaTeX offers the \autoref() feature).

You have a few options for crafting MultiMarkdown that will be
handled differently for HTML than for another format.

1. You can use HTML comments to include text that is ignored in
HTML documents, but is passed through verbatim to other for-
mats. See the section on Raw Source (section) for more informa-
tion. This only works with one format besides HTML.

2. You can use file transclusion with Wildcard Extensions (subsec-
tion) to embed a different string of text for each output format.
This requires a bit more organization, but allows you to do just
about anything you like.

Scrivener Tricks

Scrivener64 is a full-featured tool for writers that includes some sup- 64 http://www.literatureandlatte.com/

port for MultiMarkdown when exporting to other formats.

Multiple Citations

When using Scrivener to publish to LaTeX, you may want to include
multiple sources within a single citation. Mike Thicke suggests this
approach:

In the Compile | Replacements dialog I have:

][],[# --> ,

],[][# --> ,

http://www.literatureandlatte.com/
http://www.literatureandlatte.com/

58 fletcher t. penney

So for citations like this:

[][#Tversky:1974wi],[][#Kahneman:1979wl],[][#Tversky:1981vc]

I get this:

[][#Tversky:1974wi,Kahneman:1979wl,Tversky:1981vc]

When complied to Latex it becomes:

~\citep{Tversky:1974wi,Kahneman:1979wl,Tversky:1981vc}

And finally:

(Tversky and Kahneman 1974; Kahneman and Tversky 1979; Tversky and Kahneman 1981)

If you want page numbers you might have to do raw latex or use RegEx replacements.

You could always doing something similar with a script to find/
replace the same syntax in tools other than Scrivener.

Known Issues

OpenDocument

OpenDocument doesn’t properly support image dimensions

It’s relatively easy to insert an image into ODF using fixed dimen-
sions, but harder to get a scaled image without knowing the exact
aspect ratio of the image.

For example, in LaTeX or HTML, one can specify that image
should be scaled to 50% of the width, and have it automatically cal-
culate the proper height. This does not work in ODF, at least not that
I can find.

You have to manually adjust the image to fit your desired con-
straint. It’s easy to do, simply hold down the shift key while ad-
justing the image size, and it will likely snap to match the specified
dimension.

I welcome suggestions on a better way to do this.

RTF

• Non-ASCII characters are not supported

• Lists are not proper lists

• Images are not supported

• Tables are not fully supported

OPML

OPML doesn’t handle “skipped” levels

When converting a MMD text file to OPML with the mmd binary,
each level only contains it’s direct children. For example:

First Level

60 fletcher t. penney

Second Level

Third Level

Another Second Level

Fourth Level

When this is converted to OPML, the “Fourth Level” item will
be deleted, since it skips a level from its parent, “Another Second
Level”.

It’s possible to fix this, but it’s going to take a more complicated
algorithm than what I currently have and it’s not a high priority for
me to fix at the moment.

As always, suggestions welcome.

Things Yet to Be Done

RTF

• Support lists

• Improve table support

• Support Non-ASCII characters

• Code span

More Information

For more information about MultiMarkdown, visit the following
sites:

• http://fletcherpenney.net/multimarkdown/

• https://github.com/fletcher/MultiMarkdown-4/

• https://groups.google.com/forum/#!forum/multimarkdown

http://fletcherpenney.net/multimarkdown/
https://github.com/fletcher/MultiMarkdown-4/
https://groups.google.com/forum/#!forum/multimarkdown

Acknowledgements

Thanks to the individuals and groups below for their contributions to
improving Markdown and MultiMarkdown:

• John Gruber

• Michel Fortin

• Jonathan Weber

• Mark Eli Kalderon

• Choan C. Gálvez

• Dr. Drang

• Robert McGonegal

• David Green

• Trey Pickard

• Saleem

• Melinda Norris

• Sean Wallace

• Allan Odgaard

• Stefan Brantschen

• Keith Blount

• Gerd Knops

• John Purnell

• Jonathan Coulombe (special thanks for helping troubleshoot MMD
3.0!)

• Jason Bandlow

• Joakim Hertze

66 fletcher t. penney

• Kee-Lin Steven Chan

• Vasil Yaroshevich

• Matt Neuburg

• James Howison

• Edward Nixon

• etherean

• Özgür Gökmen

• Chad Schmidt

• Greg (gr)

• Ben Jennings

• Silvan Kaiser

• Tomas Doran

• Rob Walton

• Dan Rolander

• Duoyi wu

• Dan Dascalescu

• Ingolf Schäfer

• Chris Bunch

• Oblomov

• Alex Melhuish

• Stephan Mueller

• Josh Brown

• Rob Person

• Matthew D. Rankin

• Dawid Ciężarkiewicz

• Joonas Pulakka

• ipetraka

• John MacFarlane (special thanks for creating peg-markdown65 and 65 https://github.com/jgm/peg-
markdownhelping me to get started on MMD 3.0!)

https://github.com/jgm/peg-markdown
https://github.com/jgm/peg-markdown
https://github.com/jgm/peg-markdown

multimarkdown user’s guide 67

• David Sparks

• Katie Floyd

• Daniel Müller

• Daniel Jalkut (special thanks for helping to remove glib depen-
dency!)

• Jon Skovron

• Jake Walker

• Michael Heilemann

• Brett Terpstra

• Charles Cowan

• David Richards

• Thomas Hodgson

• Dan Lowe

and others I have surely forgotten. . . .

Release Notes

4.7.1

• New installers – should preserve proper owner on OS X; New
format for Windows installer – please let me know if it doesn’t
work.

• Fix memory leaks

• Fix edge case in strong/emph parsing

• custom ‘strndup’ function to improve compiling on Windows
(seriously, I wish Windows would join the rest of the modern
world. . .)

• ‘markdown’ script/batch file to run in compatibility mode

• other slight tweaks to source code

4.7

• As of version 4.7, the OS X MultiMarkdown installer will no
longer support ppc processors. You will have to compile yourself
for these machines.

• {{TOC}} inserts a basic Table of Contents inside the document

• Improve abbreviation matching to include blockquotes, lists

• mmd export format – performs transclusions but doesn’t parse

• restructure test suite

• add a cmake experimental branch – same source, different build
system

• fix error with certain invalid image links

• update documentation

• don’t break if heading immediately follows table

70 fletcher t. penney

• fix error when parsing multiple files at once

• allow for raw RTF

• add mmd_header metadata support

• improve code blocks in beamer (thanks to marco-m)

• improve backtick style quotes

• improve transclusion with nested directories

• option to show manifest of transcluded files (-x or --manifest)

• Improved YAML support

• Update greg

• Improved Unicode support on Windows when transcluding

• Strip BOM when transcluding

• Support “japanese commas” for underscored strong/emph

• show “–manifest” option in help

• Other bug fixes

4.6

• Add mmd footer metadata feature

• Add support for abbreviations

• improve hyphen escaping in LaTeX

• Ignore wrapping <> in reference URLs

• Improve table alignment in LaTeX

• Improve windows batch script paths

• Additional error checking in file transclusion

• memory fixes/code cleanup

• Other small fixes

• improve strong/emph matching

• improve whitespace handling around fenced code blocks

• Improve whitespace handling around headings, block quotes

• Fix bug in tables

• Fix YAML and OPML

multimarkdown user’s guide 71

4.5.3

• Include mmd2rtf in Windows installer

• improved support for inline footnotes

• Fix potential bug when handling beamer latexmode metadata

• add latex title and latex author metadata support

• Fix bug when sequential dashes used in code spans for LaTeX
export (Thanks to Thomas Hodgson for noticing this)

• Add to list of known HTML5 tags

• update windows batch scripts

• Improve metadata handling in snippet mode

• Improved transclusion path logic

• Fix order of citations when printing footnotes in HTML

• Fix potential memory leaks

4.5.2

• escaped newlines (from njmsdk)— http://fletcher.github.io/
MultiMarkdown-4/escaped-newlines

• updated test suite

• fix bug in CriticMarkup parsing

• fix bug when processing multiple files in batch mode with latex-
mode metadata set

• add mmd2rtf, for what it’s worth (RTF support is not complete)

http://fletcher.github.io/MultiMarkdown-4/escaped-newlines
http://fletcher.github.io/MultiMarkdown-4/escaped-newlines

	MultiMarkdown User's Guide
	Introduction
	What is Markdown?
	What is MultiMarkdown?
	Why should I use MultiMarkdown?
	What Are the Different Versions of MultiMarkdown?
	Where is this Guide Kept?

	The Philosophy Behind MultiMarkdown
	The Purpose of MultiMarkdown
	Feature Requests

	Installation
	Mac OS
	*nix
	Windows
	Free BSD
	Compile From Source

	How to Use MultiMarkdown
	Command Line Usage
	Mac OS X Applications
	Using MultiMarkdown in Windows
	MultiMarkdown and LaTeX
	MultiMarkdown and OPML
	MultiMarkdown and OpenDocument
	MultiMarkdown and RTF
	MultiMarkdown and LyX

	Syntax
	Metadata
	Metadata ``Variables''
	``Standard'' Metadata keys
	Smart Typography
	Cross-References
	Link and Image Attributes
	Images
	Tables
	Footnotes
	Citations
	BibTeX
	Definition Lists
	Abbreviations
	Fenced Code Blocks
	Math
	Superscripts and Subscripts
	Glossaries
	CriticMarkup
	Raw HTML
	Raw LaTeX/OpenDocument/etc.
	File Transclusion
	Escaped newlines

	``Hacking'' MultiMarkdown
	Multiple Formats
	Scrivener Tricks

	Known Issues
	OpenDocument
	RTF
	OPML

	Things Yet to Be Done
	RTF

	More Information
	Acknowledgements
	Release Notes
	4.7.1
	4.7
	4.6
	4.5.3
	4.5.2

